首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了生物SiC多孔陶瓷的研究现状,并对生物碳模板的分类、制备方法进行了详尽的叙述,同时对生物SiC多孔陶瓷的各项性能进行了综述,最后对生物SiC多孔陶瓷的发展趋势作了总结。  相似文献   

2.
A reaction bonding technique was used for the preparation of cordierite-bonded porous SiC ceramics in air from α-SiC, α-Al2O3 and MgO, using graphite as the pore-forming agent. Graphite was burned out to produce pores and the surface of SiC was oxidized to SiO2 at high temperature. With further increasing the temperature, SiO2 reacted with α-Al2O3 and MgO to form cordierite. SiC particles were bonded by the cordierite and oxidation-derived SiO2. The reaction bonding characteristics, phase composition, open porosity, pore size distribution and mechanical strength as well as microstructure of porous SiC ceramics were investigated. The pore size and porosity were strongly dependent, respectively, on graphite particle size and volume fraction. The porous SiC ceramics sintered at 1350 °C for 2 h exhibited excellent combination properties, the flexural strength of 26.0 MPa was achieved at an open porosity of 44.51%.  相似文献   

3.
4.
碳化硅(SiC)多孔陶瓷作为一种重要的结构材料,具有高熔点、高强度、比表面积大、体积密度小、热膨胀系数小以及良好的化学稳定性等优点,被广泛应用于催化剂载体、气/液过滤装置、生物医学材料、保温材料和耐火材料等领域。SiC多孔陶瓷的微观结构、性能及服役寿命等均受其制备方法的影响,因此综述了近年来国内外在SiC多孔陶瓷制备方法方面的研究进展,总结了物理成孔法(包括颗粒堆积法、冷冻干燥法及3D打印法等)和化学成孔法(包括添加造孔剂法、有机泡沫浸渍法与生物模板法等)制备SiC多孔陶瓷的优缺点,并对其发展方向和重点进行了展望。  相似文献   

5.
《Ceramics International》2017,43(17):14683-14692
Cordierite-silica bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC with cordierite sol followed by sintering at 1300–1400 °C in air. The porosity, average pore diameter and flexural strength of the ceramics varied 30–36 vol%, ~ 4–22 µm and ~ 13–38 MPa respectively with variation of sintering temperature and SiC particle sizes. In the final ceramics SiC particles were bonded by the oxidation-derived SiO2 and sol-gel derived cordierite. The corrosion behaviour of sintered SiC ceramics was studied in acidic and alkaline medium. The porous SiC ceramics were observed to exhibit better corrosion resistance in acid solution.  相似文献   

6.
Silicon carbide reticulated porous ceramics (SiC RPCs) with multi‐layered struts were fabricated by polymer replica technique with SiC slurry, followed by infiltrating alumina slurries containing andalusite under vacuum condition. The effects of andalusite addition on the microstructure and mechanical properties of SiC RPCs were investigated, also the residual stress within the multi‐layered strut was predicted. Theoretical calculations showed that the residual tensile stress generated in the outer layer of SiC RPCs because of its larger thermal expansion coefficient of infiltration slurry than that of SiC slurry at elevated temperature. Furthermore, the addition of andalusite reduced the thermal expansion coefficient and Young's modulus of infiltration slurries, thereby significantly reducing the residual stress of the outer layer in multi‐layered struts. The reduced residual tensile stress within the outer layer was beneficial to eliminate surface cracks on the struts, thus improving the mechanical properties and thermal shock resistance of SiC RPCs.  相似文献   

7.
《Ceramics International》2016,42(11):13091-13097
Silicon carbide reticulated porous ceramics (SiC RPCs) with multi-layered struts were fabricated at 1450 °C by polymer sponge replica technique, followed by vacuum infiltration. The effect of additives (polycarboxylate, ammonium lignosulfonate and sodium carboxymethyl-cellulose) on the rheological behavior of silicon carbide slurry was firstly investigated, and then the slurry was coated on polyurethane open-cell sponge template. Furthermore, alumina slurry was adopted to fill up the hollow struts in vacuum infiltration process after the coated sponge was pre-treated at 850 °C. The results showed that the coating thickness on the struts and the microstructure in SiC RPCs were closely associated with the solid content of alumina slurry during vacuum infiltration. The typical multi-layered strut of SiC RPCs could be achieved after the infiltration of an alumina slurry containing 77 wt% solid content. The compressive strength and thermal shock resistance of the infiltrated specimens were significantly improved in comparison with those of non-infiltrated ones. The improvement was attributed to the in-situ formation of reaction-bonded multilayer struts in SiC RPCs, which were characterized by the exterior coating of aluminosilicate-corundum, middle part of mullite bonded SiC and interior zone of corundum.  相似文献   

8.
Spherical SiC powders were prepared at high temperature using commercial SiC powders (4.52 µm) with irregular morphology. The influence of spherical SiC powders on the properties of SiC porous ceramics was investigated. In comparison with the as-received powders, the spheroidized SiC powders exhibited a relatively narrow particle size distribution and better flowability. The spheroidization mechanism of irregular SiC powder is surface diffusion. SiC porous ceramics prepared from spheroidized SiC powders showed more uniform pore size distribution and higher bending strength than that from as-received SiC powders. The improvement in the performance of SiC porous ceramics from spheroidized powder was attributed to tighter stacking of spherical SiC particles. After sintering at 1800 °C, the open porosity, average pore diameter, and bending strength of SiC porous ceramics prepared from spheroidized SiC powder were 39%, 2803.4 nm, and 66.89 MPa, respectively. Hence, SiC porous ceramics prepared from spheroidized SiC powder could be used as membrane for micro-filtration or as support of membrane for ultra/nano-filtration.  相似文献   

9.
The new route for recycling fly ash was proposed to prepare SiC reticulated porous ceramics (SRPCs) with high strength and increased efficient filtration for molten metal filtration. The effects of fly ash on the rheological characteristics, microstructure evaluation and wetting behavior between SRPCs and molten metal were investigated. It was found that the fly ash was beneficial to thixotropic property of SiC slurry when its content was less than 30 wt%. Furthermore, fly ash in SRPCs was completely transformed into mullite with needle-shape at 1300 °C, forming a porous structure containing micro pores and windows. SRPCs containing 20 wt% fly ash exhibited a higher strength because of the improved rheological properties of SiC slurry and the optimized microstructure in skeleton. In addition, the added fly ash in SRPCs could increase the contact angle between skeleton substrate and molten metal via microporosization of skeleton, thus exhibiting the potential ability to improve the filtration efficiency.  相似文献   

10.
Mullite-bonded porous SiC ceramics sintered in air by gelcasting are still challenges due to the high porosity induced severe oxidation of SiC, which results in the formation of large amount of detrimental cristobalite phase. Here in this work, small amounts of Y2O3 and CaF2 were added in SiC and Al(OH)3 raw materials as sintering additives for the in situ growth of mullite reinforcement. This additive system promoted the reaction between oxidation-derived SiO2 from SiC and Al2O3 decomposed from Al(OH)3 to mullite phase. Almost no cristobalite phase was detected when sintered at 1450℃/2 h with CaF2 addition of more than 2.0 wt%. Mullite whisker reinforcement was in situ formed due to the gas reaction mechanism caused by CaF2 addition. Thus obtained porous SiC ceramics exhibited a flexural strength of 67.6 MPa at porosity of 41.3%, which maintained exceeding 36 MPa after 8 h corrosion in 10 wt% NaOH 80℃ solution, being the best performance up to now. This high performance of porous SiC was attributed to the additive induces proper phase control and in situ formation of whisker-like mullite reinforcement.  相似文献   

11.
We herein report a novel strategy for direct ink writing of porous SiC parts by using geopolymers (GP) as binders and sintering SiC/GP composites at high temperatures via carbothermal reduction. The effects of treatment temperatures on the microstructure, pore size distribution and compressive strength of SiC/GP composites were systematically investigated. The total porosity of porous SiC carriers was as high as 76.4 vol% after being sintered at 1800 °C and exhibited a much broader pore size distribution (pore volumes) between 39 nm and 13.951 µm (~1.68 mL/g) accompanied by an interconnected hierarchical porous structure. After loading lamellar graphene oxide into the porous SiC carrier to form GO/SiC adsorbents, they exhibited fast and near-unity removal of methylene blue, and the adsorption efficiency still exceeded 82.0% after multiple times usage. These results prove that it is possible to remove hazardous materials from wastewater using reusable porous SiC ceramics as reusable adsorbent carriers.  相似文献   

12.
《Ceramics International》2017,43(15):11855-11863
A new gradient pore structure in porous SiC ceramics was fabricated by low pressure chemical vapor infiltration (LPCVI). Effects of deposition duration on the mechanical properties and permeability of porous SiC ceramics were investigated. Results demonstrated that pore diameter and shapes decreased from the surface to the interior along with LPCVI duration. Porous SiC ceramics with deposition duration of 160 h exhibited flexural strength of 48.05 MPa and fracture toughness of 1.30 MPa m1/2, where 221% and 189% improvements were obtained compared to porous SiC ceramics without LPCVI, due to CVI-SiC layer strengthening effect. Additionally, at the same gas velocity, pressure drop increase rate was faster due to apparent porosity and pore size change.  相似文献   

13.
《Ceramics International》2007,33(6):901-904
Polycarbosilane (PCS) was used as a precursor to prepare SiC reticulated porous ceramics (RPCs) with in situ growth of β-SiC nanowires at 1000–1300 °C. The nanowires in diameters of ∼50 nm exist on the surface of the strut and in the fracture surface of strut in SiC RPCs. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) indicate that the nanowire consists of a twinned β-SiC, which grows along the 〈1 1 1〉 direction. Field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) reveal that β-SiC nanowire grows by the vapor–liquid–solid (VLS) process at low temperature. The morphologies of the nanowire formed at different temperatures testify the process. As the heat-treated temperature increased, the growth mechanism of the nanowire changes from VLS to vapor–solid (VS).  相似文献   

14.
Biomorphic porous SiC composite ceramics were produced by chemical vapor infiltration and reaction (CVI-R) technique using paper precursor as template. The thermal conductivity of four samples with different composition and microstructure was investigated: (a) C-template, (b) C-SiC, (c) C-SiC–Si3N4 and (d) SiC coated with a thin layer of TiO2. The SiC–Si3N4 composite ceramic showed enhanced oxidation resistance compared to single phase SiC. However, a key property for the application of these materials at high temperatures is their thermal conductivity. The later was determined experimentally at defined temperatures in the range 293–373 K with a laser flash apparatus. It was found that the thermal conductivity of the porous ceramic composites increases in the following order: C-template < C-SiC < C-SiC–Si3N4 < SiC–TiO2. The results were interpreted in regard to the porosity and the microstructure of the ceramics.  相似文献   

15.
《Ceramics International》2023,49(6):9097-9103
SiC reticulated porous ceramic (SRPC) as the key component determined the service life and combustion characteristics of porous burner. The novel multi-layer struts were constructed to synergistically improve the oxidation resistance and infrared radiation of SRPC, including microporous cordierite coating, dense mullite transition layer, SiC skeleton and filling layer. The continuous mullite transition layer significantly improved the resistance to water vapor oxidation of SRPC, also their strength and thermal shock resistance were enhanced because the elimination of strut defects in multi-layer struts. In addition, the microporous cordierite coating generated from the burnt out of pitch increased the burner surface temperature from 764.4 °C to 1061.7 °C, and obviously reduced the CO/NOx emission due to its improved infrared radiation property. Furthermore, the porous cordierite coating enhanced the heat radiation of SRPC, thus increasing the heating rate of the burner from 29.4 °C/min to 33.1 °C/min in the process of water heating.  相似文献   

16.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

17.
18.
Multiple oxide-bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC and alumina with cordierite sol followed by sintering at 1300-1400°C in air for 3 hours. The microstructures, phase components, mechanical properties, and air permeation behavior of the developed porous ceramics were examined and compared with materials obtained by the traditional powder processing route. The porosity, average pore diameter, and flexural strength of the ceramics varied from 33 to 37 vol%, ~12-14 μm and ~23-39.6 MPa, respectively, with variation in sintering temperature. The X-ray diffraction results reveal that both the amount of cordierite and mullite as the binder increased with increase in sintering temperature. In addition, it was found that the addition of alumina in powder form effectively enhanced the strength due to formation of mullite in the bond phase in contrast to the samples prepared without alumina additive. To determine the suitability of the material in particulate filtration application, particle collection efficiency of the filter material was evaluated theoretically using single collector efficiency model.  相似文献   

19.
SiC porous ceramics were prepared by heating mixtures of Si powder and carbon black at 900 °C for 24 h in Na vapor. The grains of the Si powder were not only the source of Si for SiC but also served as templates for the pores in the SiC porous ceramics. Angular-shaped pores with sizes of 2-10, 10-150 and 50-150 μm were formed by angular Si grains with sizes of ≤10, ≤50 and ≤150 μm, respectively. The porosity of the SiC porous ceramics was around 55-59%. Spherical pores were also formed when spherical Si grains were used. A bending strength of 14 MPa was measured for the SiC porous ceramics prepared with the Si grains (≤50 μm).  相似文献   

20.
SiC porous ceramics can be prepared by introducing the polyurethane preparation method into the production process of ceramic biscuits, followed by sintering at 1300?°C for 2?h under N2 flux after the cross-linking of polycarbosilane at 220?°C for 4?h in air. The microstructures, mechanical properties and infiltrations of the SiC porous ceramics are investigated in detail. The best dispersal effect comes from the SiC slurry with xylene as the solvent and a mixture of Silok®7096 (1?wt%) and Anjeka®6041 (4?wt%) as the dispersant. The compressive strength of SiC porous ceramics with high porosity (69.53%) reaches 16.9?MPa. The heat treatment can increase infiltration, the rate of which (4.296?×?10?7 mm2) after the heat treatment at 750?°C in air is approximately two times faster than that before the heat treatment. The SiC porous ceramics fabricated in this study will have potential application in active thermal protection systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号