首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

2.
This paper studies the physical properties, compressive strength and drying shrinkage of multi-blended cement under different curing methods. Fly ash, ground bottom ash and undensified silica fume were used to replace part of cement up to 50% by weight. Specimens were cured in air at ambient temperature, water at 25, 40 and 60 °C, sealed with plastic sheeting for 28 days. The results show that absorption and volume of permeable pore space (voids) of blended cement mortars at 28 day under all curing methods tend to increase with increasing silica fume replacement. The compressive strength of blended cement with fly ash and bottom ash was lower than that of Portland cement control at all curing condition while blended cement with silica fume shows higher compressive strength. In addition, the compressive strength of specimens cured with water increased with increasing curing temperature. The drying shrinkage of all blended cement mortar cured in air was lower than that of Portland cement control while the drying shrinkage of blended cement mortar containing silica fume, cured with plastic sealed and water at 25 °C was higher than Portland cement control due to pore refinement and high autogenous shrinkage. However, the drying shrinkage of blended cement mortar containing SF cured with water at 60 °C was lower than that of Portland cement control due to lower autogenous shrinkage and the reduced microporosity of C–S–H.  相似文献   

3.
Zeolite, a type of natural pozzolanic material, has been used in producing blended cement and concrete in China. The purpose of this study is to evaluate the effectiveness of zeolite in enhancing the performance of concrete in comparison with silica fume and pulverized fuel ash (PFA). In the first series of experiments, zeolite, silica fume, and PFA were all used to replace 5%, 10%, 15% and 30% of cement by weight in concrete with water to total cementitious material ratio (W/(C + P)) kept at 0.28. The results showed that zeolite decreased bleeding and increased marginally the viscosity of concrete without significantly compromising the slump. And at 15% replacement level, it resulted in 14% increase in concrete strength at 28-day compared with the control concrete. The test results also showed that there existed an optimum replacement level for zeolite to effect a decrease in initial surface absorption and in chloride diffusion of concrete. The test results of the second series of experiments where zeolite, silica fume and PFA were in turn used to replace 10% of cement in concretes with W/(C + P) in the range of 0.27 to 0.45 appeared that zeolite performed better than PFA but was inferior to silica fume in terms of increasing strength, decreasing initial surface absorption and chloride diffusion. It was further found that when W/(C + P) was greater than 0.45, the strength of the concretes incorporating zeolite or PFA (by direct replacement) was lower than that of the control concrete. The micro-structural study on concrete with zeolite revealed that the soluble SiO2 and Al2O3 could react with Ca(OH)2 to produce C–S–H which densified the concrete matrix. Pozzolanic effect of zeolite improved the microstructure of hardened cement paste and reduced the content of the harmful large pores, hence made concrete more impervious.  相似文献   

4.
This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings.  相似文献   

5.
Concretes containing a coarse limestone powder (median particle size of 72 μm) as a partial cement replacement material are proportioned so as to attain similar 7-day compressive strengths as a 0.40 water-to-cement ratio (w/c) control concrete. The moisture and chloride ion transport behavior of the concretes containing limestone powder with and without small amounts of silica fume are evaluated in this paper. It is shown that a 15% cement replacement with coarse limestone powder at a water-to-powder ratio (w/p) of 0.34 results in concretes of better or comparable compressive strengths, porosities, moisture transport parameters (overall moisture intake, and sorptivity), and rapid chloride permeability (RCP) as that of a 0.37 w/c plain concrete. However, the non-steady state migration coefficients (Dnssm) of concretes containing limestone powder are found to be higher than those of plain concretes of even higher w/c. A microstructural parameter ( – product of porosity and pore connectivity) is used to relate the pore structure to the moisture and ionic transport. Relationships between and the moisture and ionic transport parameters are provided, which shed light on the combined influence of w/p and a highly reactive cement replacement material such as silica fume on the different transport properties of concretes containing a coarse limestone powder.  相似文献   

6.
This paper presents a laboratory investigation on optimum level of ground granulated blast-furnace slag (GGBS) on the compressive strength of concrete. GGBS was added according to the partial replacement method in all mixtures. A total of 32 mixtures were prepared in four groups according to their binder content. Eight mixes were prepared as control mixtures with 175, 210, 245 and 280 kg/m3 cement content in order to calculate the Bolomey and Féret coefficients (KB, KF). For each group 175, 210, 245 and 280 kg/m3 dosages were determined as initial dosages, which were obtained by removing 30 percent of the cement content of control concretes with 250, 300, 350, and 400 kg/m3 dosages. Test concretes were obtained by adding GGBS to concretes in an amount equivalent to approximately 0%, 15%, 30%, 50%, 70%, 90% and 110% of cement contents of control concretes with 250, 300, 350 and 400 kg/m3 dosages. All specimens were moist cured for 7, 14, 28, 63, 119, 180 and 365 days before compressive strength testing.The test results proved that the compressive strength of concrete mixtures containing GGBS increases as the amount of GGBS increase. After an optimum point, at around 55% of the total binder content, the addition of GGBS does not improve the compressive strength. This can be explained by the presence of unreacted GGBS, acting as a filler material in the paste.  相似文献   

7.
This study investigated the flowability, compressive strength, heat of hydration, porosity and calcium hydroxide content of ultra-high-strength concrete (UHSC) with cement–silica fume–slag binder at 20 °C. The composition of the binder was designed using seven-batch factorial design method. The relationships between the binder composition and the properties were expressed in contours. Results showed that proper silica fume content could improve the flowability and compressive strength of UHSC, reduce the porosity and calcium hydroxide content of UHSC. Slag reduced the flowability, compressive strength, porosity, and calcium hydroxide content of UHSC to certain extent. The silica fume and slag demonstrated positive synergistic effects on the flowability and 3 d compressive strength, but have negative synergistic effects on the total heat of hydration, hydration heat when the time is infinitely long(P0), 56 d compressive strength, porosity and calcium hydroxide content of UHSC.  相似文献   

8.
In this paper, the effects of high temperature exposure of recycled aggregate concretes in terms of residual strengths, capillary water absorption capacity and pore size distribution are discussed. Two mineral admixtures, fly ash (FA) and ground granulated blast furnace (GGBS) were used in the experiment to partially replace ordinary Portland cement for concrete production. The water to cementitious materials ratio was maintained at 0.50 for all the concrete mixes. The replacement levels of natural aggregates by recycled aggregates were at 0%, 50% and 100%. The concretes were exposed separately to 300 °C, 500 °C and 800 °C, and the compressive and splitting tensile strength, capillary water coefficient, porosity and pore size distribution were determined before and after the exposure to the high temperatures. The results show that the concretes made with recycled aggregates suffered less deteriorations in mechanical and durability properties than the concrete made with natural aggregates after the high temperature exposures.  相似文献   

9.
The influence of sodium sulfate, as an activator, on the hydration of calcium aluminate cement (CAC)–fly ash (FA)–silica fume (SF) composites was investigated. Different mixes of CAC with 20% pozzolans (20% FA, 20% SF and 10% FA + 10% SF) were prepared and hydrated at 38 °C for up to 28 days. The hydration products were investigated by XRD, DSC and SEM. The results showed that sodium sulfate accelerated the hydration reactions of calcium aluminate cement as well as the reactions of FA and SF with CAH10 and C2AH8 to form the strätlingite (C2ASH8). The later reactions prevent the strength loss by preventing the conversion of CAH10 and C2AH8 to the cubic C3AH6 phase. The acceleration effect of Na2SO4 on the reactivity of fly ash was more pronounced than on the reactivity of silica fume with respect to reaction with CAH10 and C2AH8 phases.  相似文献   

10.
This paper reports on an experimental program to investigate the effect of using copper slag as a replacement of sand on the properties of high performance concrete (HPC). Eight concrete mixtures were prepared with different proportions of copper slag ranging from 0% (for the control mix) to 100%. Concrete mixes were evaluated for workability, density, compressive strength, tensile strength, flexural strength and durability. The results indicate that there is a slight increase in the HPC density of nearly 5% with the increase of copper slag content, whereas the workability increased rapidly with increases in copper slag percentage. Addition of up to 50% of copper slag as sand replacement yielded comparable strength with that of the control mix. However, further additions of copper slag caused reduction in the strength due to an increase of the free water content in the mix. Mixes with 80% and 100% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa, which is almost 16% lower than the strength of the control mix. The results also demonstrated that the surface water absorption decreased as copper slag quantity increases up to 40% replacement; beyond that level of replacement, the absorption rate increases rapidly. Therefore, it is recommended that 40 wt% of copper slag can used as replacement of sand in order to obtain HPC with good strength and durability properties.  相似文献   

11.
This study considers the compressive strength development of broad range of hydraulic lime mortars prepared with a range of commercially available alumino-silicate by-products and modern pozzolanic additions. Specifically this paper considers the effect of mineral addition selection, binary and ternary combinations, pozzolan content and the effect of curing conditions on the compressive strength development of hydraulic lime based mortars. The study was undertaken as the initial phase of a broader investigation considering the feasibility of producing modern, sustainable hydraulic lime–pozzolan concretes with comparable strengths to Portland cement based concretes. The aim of the initial phase was to identify a small number of additions, and combinations thereof, which would result in a structural strength lime–concrete when scaled up from mortars to concretes.In the absence of a definitive source of information on the mechanical properties of hydraulic-lime mortars prepared with binary and ternary combinations of alumino-silicate by-products, 22 combinations consisting of Natural Hydraulic Lime (NHL5) and a range of possible additions, identified from historical and current practice, were prepared. The results have shown that combining an eminently-hydraulic NHL5 with silica fume and ground granulated blastfurnace slag can produce mortars with a 28-day compressive cube strength of around 28 N/mm2, at a water-to-binder (w/b) ratio of 0.5. This is eight times the strength of an equivalent mortar prepared with NHL5 alone and broadly speaking comparable with that of low-heat cementitious mortars. The contribution of the pozzolanic reaction to the strength of hydraulic lime mortars is discussed for a range of alumina-silicious materials and combinations thereof.  相似文献   

12.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

13.
The influence of sodium sulfate, as an activator, on the hydration of calcium aluminate cement (CAC)–fly ash (FA)–silica fume (SF) composites was investigated. Different mixes of CAC with 20% pozzolans (20% FA, 20% SF and 10% FA + 10% SF) were prepared and hydrated at 38 °C for up to 28 days. The hydration products were investigated by XRD, DSC and SEM. The results showed that sodium sulfate accelerated the hydration reactions of calcium aluminate cement as well as the reactions of FA and SF with CAH10 and C2AH8 to form the strätlingite (C2ASH8). The later reactions prevent the strength loss by preventing the conversion of CAH10 and C2AH8 to the cubic C3AH6 phase. The acceleration effect of Na2SO4 on the reactivity of fly ash was more pronounced than on the reactivity of silica fume with respect to reaction with CAH10 and C2AH8 phases.  相似文献   

14.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

15.
When dealing with concrete resistance to high temperatures it is important for design purposes to know the elastic parameters, such as the temperature–strain curves and the modulus of elasticity.Concretes containing a high volume of fly ash differ from conventional mixes in the cementitious phase. This results in a different behaviour under heating compared to plain Portland cement concretes. To find the elastic response of fly ash concrete four series of concrete mixtures were manufactured: one with cement only, another with 30% by mass partial replacement of cement by fly ash, and two with 30% and 40% by mass replacement of cement by ground fly ash. Tests were carried out on cylinders (150 × 300 mm). A high-calcium fly ash was used.The conditions were selected so that the applied level of stress corresponded to 25% or to 40% of the ultimate compressive strength of concrete, and a transient type of temperature regime was followed. Based on the experiments the critical temperature, the residual deformation and the modulus of elasticity were determined.The results indicate that concretes containing a high volume of fly ash are more sensitive to high temperatures, since they developed greater deformations. The fineness of the fly ash used also seems to influence the degree of deformation in an adverse way.  相似文献   

16.
The particle size distributions of slag powder were investigated by Laser Scatter equipment. The influence of particle fractions of slag powder on the compressive strength of slag cement composed of 50% slag powder and 50% Portland cement was also studied by the method of grey correlation analysis. The results indicated that the volume fraction of particles 5–10 μm had a maximum positive effect on the mortar compressive strength of slag cement at 7 d and the volume fraction of particles 10–20 μm had a maximum positive effect on the mortar compressive strength at 28 d, whereas the volume fraction of particles larger than 20 μm had a negative effect on the mortar compressive strength at 7 and 28 d.  相似文献   

17.
This paper presents the experimental results of a research carried out on the strength and permeability related properties of high performance concretes made with binary and ternary cementitious blends of fly ash (FA) and metakaolin (MK). The replacement ratios for FA were 10% and 20% by weight of Portland cement and those for MK were 5% and 10%. Compressive strength, chloride permeability, water sorptivity, and water absorption properties of concretes were obtained in this study for different testing ages up to 90 days. The influences of fly ash, metakaolin, and testing age on the properties of concretes have been identified using the analysis of variance. The statistical based regression models and the response surface method with the backward stepwise techniques were employed in the multi-objective optimization analysis. That is carried out by maximizing compressive strength while minimizing chloride permeability, water sorptivity, and water absorption. It was observed that fly ash and especially metakaolin were very effective on the aforementioned properties of the concretes, depending mainly on replacement levels and duration of curing. The results indicated that the ternary use of fly ash and metakaolin with the approximate cement replacement values of 13.3% and 10% respectively has provided the best results for the testing age of 90 days, when the optimized strength and permeability based durability properties of the concretes are concerned.  相似文献   

18.
This paper presents a detailed experimental study on the sulfate attack of Portland cement mortars, and the effectiveness of silica fume in controlling the damage arising from such attack. The test solutions used to supply the sulfate ions and cations were 5% sodium sulfate solution and 5% magnesium sulfate solution. Tap water was used as the reference solution. The main variables investigated in the study were the water/cementitious materials ratio, and the level of cement replacement. Compressive strength measured on 50 mm cubes was used to assess the changes in the mechanical properties of mortar specimens exposed to sulfate attack for 510 days. X-ray diffraction and differential scanning calorimetry were used to evaluate the microstructural nature of the sulfate attack. The test results showed that the presence of silica fume had a beneficial effect on the strength loss due to sodium sulfate attack. The best resistance to sodium sulfate attack was obtained with a SF replacement of 5–10%, but even then, a strength loss of 15–20% can be expected. On the other hand, mortars with silica fume were severely damaged in the magnesium sulfate environment. Further, the compressive strength loss actually increased with increasing SF content. The test results thus showed clearly that the use of SF in concrete exposed to magnesium sulfate solution is not recommended. The test results also showed that the w/cm ratio is the most critical parameter influencing the resistance of concrete to sulfate attack. All the tests reported in the study were carried out at 20 ± 1 °C.  相似文献   

19.
Concrete durability was investigated, taking under consideration the limestone content of the cement used, as well as the effect of chlorides on concrete’s deterioration due to the thaumasite form of sulfate attack. A normal Portland cement and two Portland limestone cements (15% and 35% w/w limestone content) were used for concrete preparation. The specimens were immersed in two corrosive solutions (chloride-sulfate; sulfate) and stored at 5 ± 1 °C. Visual inspection of the specimens, mass measurements and compressive strength tests took place for 24 months. Concretes containing limestone, as cement constituent and/or as aggregate, suffered from the thaumasite form of sulfate attack, which was accompanied by brucite and secondary gypsum formation. Limestone cement concretes exhibited higher deterioration degree compared to the concrete made without limestone cement. The disintegration was more severe and rapid, the higher the limestone content of the cement used. Chlorides inhibit sulfate attack on concrete, thus delaying and mitigating its deterioration.  相似文献   

20.
The mechanical properties (flexural strength, compressive strength, toughness and fracture energy) of steel microfiber reinforced reactive powder concrete (RPC) were investigated under different curing conditions (standard, autoclave and steam curing). Portland cement was replaced with ground granulated blast furnace slag (GGBFS) at 20%, 40% and 60%. Sintered bauxite, granite and quartz were used as aggregates in different series. The compressive strength of high volume GGBFS RPC was over 250 MPa after autoclaving. When an external pressure was applied during setting and hardening stages, compressive strength reached up to 400 MPa. The amount of silica fume can be decreased with increasing amount of GGBFS. SEM micrographs revealed the tobermorite after autoclave curing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号