首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
企业对产品进行创新改进,带来装配线上装配任务的变化,从而造成已平衡装配线的失衡。针对上述变化给企业混流装配线带来的影响进行了研究,以最小化生产节拍,工作站间的负荷,和工人完成新装配任务的调整成本为优化目标去建立混装线再平衡的数学模型。并设计了一种新的多目标粒子群算法求解模型,算法中引入各粒子动态密集距离去筛选外部文档的非劣解和指导全局最优值的更新,在控制解的容量同时保持Pareto解集分布均匀。此外,引入变异机制,提高了种群的全局搜索能力。最后,结合具体实例的验证表明,该改进多目标粒子群算法能有效地解决混装线再平衡问题。  相似文献   

2.
When demand structure or production technology changes, a mixed-model assembly line (MAL) may have to be reconfigured to improve its efficiency in the new production environment. In this paper, we address the rebalancing problem for a MAL with seasonal demands. The rebalancing problem concerns how to reassign assembly tasks and operators to candidate stations under the constraint of a given cycle time. The objectives are to minimize the number of stations, workload variation at each station for different models, and rebalancing cost. A multi-objective genetic algorithm (moGA) is proposed to solve this problem. The genetic algorithm (GA) uses a partial representation technique, where only a part of the decision information about a candidate solution is expressed in the chromosome and the rest is computed optimally. A non-dominated ranking method is used to evaluate the fitness of each chromosome. A local search procedure is developed to enhance the search ability of moGA. The performance of moGA is tested on 23 reprehensive problems and the obtained results are compared with those by other authors.  相似文献   

3.
多目标遗传算法在人脸识别中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
多目标遗传算法MOGA是求解多目标优化问题的有效工具,因而在求解实际问题中得到了越来越广泛的应用。但是,不同的实际问题有不同的要求及不同的约束条件,因此在求解实际问题时需要对算法的遗传操作做出改进,以满足不同问题的需要。本文就是多目标遗传算法在人脸识别中的具体应用。  相似文献   

4.
Assembly lines play a crucial role in determining the profitability of a company. Market conditions have increased the importance of mixed-model assembly lines. Variations in the demand are frequent in real industrial environments and often leads to failure of the mixed-model assembly line balancing scheme. Decision makers have to take into account this uncertainty. In an assembly line balancing problem, there is a massive amount of research in the literature assuming deterministic environment, and many other works consider uncertain task times. This research utilises the uncertainty theory to model uncertain demand and introduces complexity theory to measure the uncertainty of assembly lines. Scenario probability and triangular fuzzy number are used to describe the uncertain demand. The station complexity was measured based on information entropy and fuzzy entropy to assist in balancing systems with robust performances, considering the influence of multi-model products in the station on the assembly line. Taking minimum station complexity, minimum workload difference within station, maximum productivity as objective functions, a new optimization model for mixed-model assembly line balancing under uncertain demand was established. Then an improved genetic algorithm was applied to solve the model. Finally, the effectiveness of the model was verified by several instances of mixed-model assembly line for automobile engine.  相似文献   

5.
Mixed-model assembly lines are production systems at which two or more models are assembled sequentially at the same line. For optimal productivity and efficiency, during the design of these lines, the work to be done at stations must be well balanced satisfying the constraints such as time, space and location. This paper deals with the mixed-model assembly line balancing problem (MALBP). The most common objective for this problem is to minimize the number of stations for a given cycle time. However, the problem of capacity utilization and the discrepancies among station times due to operation time variations are of design concerns together with the number of stations, the line efficiency and the smooth production. A multi-objective ant colony optimization (MOACO) algorithm is proposed here to solve this problem. To prove the efficiency of the proposed algorithm, a number of test problems are solved. The results show that the MOACO algorithm is an efficient and effective algorithm which gives better results than other methods compared.  相似文献   

6.
Facing current environment full of a variety of small quantity customized requests, enterprises must provide diversified products for speedy and effective responses to customers’ requests. Among multiple plans of product, both assembly sequence planning (ASP) and assembly line balance (ALB) must be taken into consideration for the selection of optimal product plan because assembly sequence and assembly line balance have significant impact on production efficiency. Considering different setup times among different assembly tasks, this issue is an NP-hard problem which cannot be easily solved by general method. In this study the multi-objective optimization mathematical model for the selection of product plan integrating ASP and ALB has been established. Introduced cases will be solved by the established model connecting to database statistics. The results show that the proposed Guided-modified weighted Pareto-based multi-objective genetic algorithm (G-WPMOGA) can effectively solve this difficult problem. The results of comparison among three different kinds of hybrid algorithms show that in terms of the issues of ASP and ALB for multiple plans, G-WPMOGA shows better problem-solving capability for four-objective optimization.  相似文献   

7.
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possible inventories. With the growth in customers’ demand diversification, mixed-model assembly lines have gained increasing importance in the field of management. Among the available criteria used to judge a sequence in MMAL, the following three are taken into account: the minimization of total utility work, total production rate variation, and total setup cost. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a hybrid multi-objective algorithm based on shuffled frog-leaping algorithm (SFLA) and bacteria optimization (BO) are deployed. The performance of the proposed hybrid algorithm is then compared with three well-known genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed hybrid algorithm outperforms the existing genetic algorithms, significantly in large-sized problems.  相似文献   

8.
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possible inventories. With the growth in customers’ demand diversification, mixed-model assembly lines have gained increasing importance in the field of management. Among the available criteria used to judge a sequence in MMAL, the following three are taken into account: the minimization of total utility work, total production rate variation, and total setup cost. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a hybrid multi-objective algorithm based on shuffled frog-leaping algorithm (SFLA) and bacteria optimization (BO) are deployed. The performance of the proposed hybrid algorithm is then compared with three well-known genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed hybrid algorithm outperforms the existing genetic algorithms, significantly in large-sized problems.  相似文献   

9.
In this paper a different type II robotic assembly line balancing problem (RALB-II) is considered. One of the two main differences with the existing literature is objective function which is a multi-objective one. The aim is to minimize the cycle time, robot setup costs and robot costs. The second difference is on the procedure proposed to solve the problem. In addition, a new mixed-integer linear programming model is developed. Since the problem is NP-hard, three versions of multi-objective evolution strategies (MOES) are employed. Numerical results show that the proposed hybrid MOES is more efficient.  相似文献   

10.
A mixed-model assembly line (MMAL) is a type of production line where a variety of product models similar to product characteristics are assembled. There is a set of criteria on which to judge sequences of product models in terms of the effective utilization of this line. In this paper, we consider three objectives, simultaneously: minimizing total utility work, total production rate variation, and total setup cost. A multi-objective sequencing problem and its mathematical formulation are described. Since this type of problem is NP-hard, a new multi-objective scatter search (MOSS) is designed for searching locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, in terms of solution quality and diversity level, various test problems are made and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three prominent multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSS outperforms the existing genetic algorithms, especially for the large-sized problems.  相似文献   

11.
The sequencing of products for mixed-model assembly line in Just-in-Time manufacturing systems is sometimes based on multiple criteria. In this paper, three major goals are to be simultaneously minimized: total utility work, total production rate variation, and total setup cost. A multi-objective sequencing problem and its mathematical formulation are described. Due to the NP-hardness of the problem, a new multi-objective particle swarm (MOPS) is designed to search locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three distinguished multi-objective genetic algorithms (MOGAs), i.e. PS-NC GA, NSGA-II, and SPEA-II. Comparison shows that MOPS provides superior results to MOGAs.  相似文献   

12.
Two-sided assembly lines are a special type of assembly lines in which workers perform assembly tasks in both sides of the line. This type of lines is of crucial importance, especially in the assembly of large-sized products, like automobiles, buses or trucks, in which some tasks must be performed at a specific side of the product. This paper presents an approach to address the two-sided mixed-model assembly line balancing problem. First, a mathematical programming model is presented to formally describe the problem. Then, an ant colony optimisation algorithm is proposed to solve the problem. In the proposed procedure two ants ‘work’ simultaneously, one at each side of the line, to build a balancing solution which verifies the precedence, zoning, capacity, side and synchronism constraints of the assembly process. The main goal is to minimise the number of workstations of the line, but additional goals are also envisaged. The proposed procedure is illustrated with a numerical example and results of a computational experience that exhibit its superior performance are presented.  相似文献   

13.
We develop a multi-objective model in a multi-product inventory system.The proposed model is a joint replenishment problem(JRP) that has two objective functions.The first one is minimization of total ordering and inventory holding costs,which is the same objective function as the classic JRP.To increase the applicability of the proposed model,we suppose that transportation cost is independent of time,is not a part of holding cost,and is calculated based on the maximum of stored inventory,as is the case in many real inventory problems.Thus,the second objective function is minimization of total transportation cost.To solve this problem three efficient algorithms are proposed.First,the RAND algorithm,called the best heuristic algorithm for solving the JRP,is modified to be applicable for the proposed problem.A multi-objective genetic algorithm(MOGA) is developed as the second algorithm to solve the problem.Finally,the model is solved by a new algorithm that is a combination of the RAND algorithm and MOGA.The performances of these algorithms are then compared with those of the previous approaches and with each other,and the findings imply their ability in finding Pareto optimal solutions to 3200 randomly produced problems.  相似文献   

14.
This paper is the first one of the two papers entitled “modeling and solving mixed-model assembly line balancing problem with setups”, which has the aim of developing the mathematical programming formulation of the problem and solving it with a hybrid meta-heuristic approach. In this current part, a mixed-integer linear mathematical programming (MILP) model for mixed-model assembly line balancing problem with setups is developed. The proposed MILP model considers some particular features of the real world problems such as parallel workstations, zoning constraints, and sequence dependent setup times between tasks, which is an actual framework in assembly line balancing problems. The main endeavor of Part-I is to formulate the sequence dependent setup times between tasks in type-I mixed-model assembly line balancing problem. The proposed model considers the setups between the tasks of the same model and the setups because of the model switches in any workstation. The capability of our MILP is tested through a set of computational experiments. Part-II tackles the problem with a multiple colony hybrid bees algorithm. A set of computational experiments is also carried out for the proposed approach in Part-II.  相似文献   

15.
The assembly line balancing problem has been a focus of interest to the academicians of production/operations management for the last 40 years. Although there are numerous studies published on the various aspects of the problem, the number of studies on mixed-model assembly lines are relatively small. In this paper, a binary integer programming model for the mixed-model assembly line balancing problem is developed and some computational properties of the model are given.  相似文献   

16.
Particle swarm optimisation (PSO) is an evolutionary metaheuristic inspired by the swarming behaviour observed in flocks of birds. The applications of PSO to solve multi-objective discrete optimisation problems are not widespread. This paper presents a PSO algorithm with negative knowledge (PSONK) to solve multi-objective two-sided mixed-model assembly line balancing problems. Instead of modelling the positions of particles in an absolute manner as in traditional PSO, PSONK employs the knowledge of the relative positions of different particles in generating new solutions. The knowledge of the poor solutions is also utilised to avoid the pairs of adjacent tasks appearing in the poor solutions from being selected as part of new solution strings in the next generation. Much of the effective concept of Pareto optimality is exercised to allow the conflicting objectives to be optimised simultaneously. Experimental results clearly show that PSONK is a competitive and promising algorithm. In addition, when a local search scheme (2-Opt) is embedded into PSONK (called M-PSONK), improved Pareto frontiers (compared to those of PSONK) are attained, but longer computation times are required.  相似文献   

17.
This paper deals with the problem of sequencing products on the mixed-model assembly line in a multi-level JIT production system. We consider both Goal(1) which levels the load at each station on the mixed-model assembly line, and Goal(2) which keeps a constant rate of production of every part in the preceding processes which are used on the mixed-model assembly line, together. We propose a mathematical model which determines the number of every product to be scheduled in each withdrawal position to realize making each withdrawal quantity of all the parts, with a fixed interval, as constant as possible. A sequencing method based on the solution stated above is given. Finally, an example is shown.  相似文献   

18.
Mixed-model assembly lines (mALs) are becoming more and more important by producing different models of the same product on an assembly line. How to calculate the cycle time based on demand of different models also making problem more difficult. According to different work experiences and skill level, the processing time of a given task and the operating costs such as wages differ among workers. Appointing the proper worker to the proper station and assigning the suitable task to the suitable station in order to decrease the cycle time, increase the line efficiency, and reduce the total cost make the problem more complex. This paper proposes a new concept for calculating the cycle time based on demand ratio of each model and another one for calculating the human resource cost. A generalized Pareto-based scale-independent fitness function genetic algorithm (gp-siffGA) is described for solving mixed-model assembly lines balancing (mALB) problems to minimize the cycle time, the variation of workload and the total cost under the constraint of precedence relationships at the same time. The gp-siffGA uses Pareto dominance relationship to solve the problems without using relative preferences of multiple objectives. Comparisons with existing multiobjective genetic algorithms demonstrate that our approach efficiently solves mALB problems.  相似文献   

19.
The factory considered in this study consists of a mixed-model assembly line and a workcenter. The mixed-model assembly line (main line) simultaneously produces different product models whose assembly parts are provided in batches by the workcenter. The main purpose of this study is to develop a batch scheduling scheme for the workcenter. The objective function of the scheduling is to provide parts for the main line without delays. The problems that make the scheduling challengeable are as follows: (1) different product models being simultaneously produced on the main line require different parts and (2) space for part inventory in the workcenter is limited. This study presents two batch scheduling approaches used to build a real system for the workcenter.  相似文献   

20.
In this paper, a new modified particle swarm optimization algorithm with negative knowledge is proposed to solve the mixed-model two-sided assembly line balancing problem. The proposed approach includes new procedures such as generation procedure which is based on combined selection mechanism and decoding procedure. These new procedures enhance the solution capability of the algorithm while enabling it to search at different points of the solution space, efficiently. Performance of the proposed approach is tested on a set of test problem. The experimental results show that the proposed approach can be acquired distinguished results than the existing solution approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号