首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room temperature time dependent properties of ZrB2–30 wt%SiC ceramic composite have been studied. Both static slow crack growth and cyclic fatigue deformation have been investigated. While static slow crack growth has been evaluated only in air, three different environments, water, air, and dry air, have been used to study the cyclic fatigue. It was established that under cyclic fatigue the environment plays an important role and humidity significantly facilitate crack growth in ZrB2–30wt%SiC. The fractography of selected ZrB2–30wt%SiC samples was performed and it was established that both defects introduced during machining as well as larger defects introduced during the processing served as fracture origins of ceramic composites.  相似文献   

2.
《应用陶瓷进展》2013,112(1):21-28
Determination of the collection parameters to create the most accurate two-dimensional Raman maps of ZrB2–10?wt-%SiC ceramic composites with the shortest experimental time and highest spatial resolution possible is of high importance and interest. In the present paper, the optimisation of the parameters such as collection times, exposure time, scan type, and resolution step size using a Renishaw inVia micro-Raman spectrometer equipped with a motorised XYZ stage for automatic collection of the maps is reported. The authors found that a static scan with 30-s exposure and any resolution better than 0.7?μm produced an adequate high-quality peak intensity and a peak with two-dimensional maps of TO peak of SiC in ZrB2–10?wt-%SiC ceramic composites within a reasonable amount of time of a few hours of collection.  相似文献   

3.
ABSTRACT

R-curve and controlled stable crack growth behaviour of ZrB2–17vol.-%SiC and ZrB2–45vol.-%SiC ceramic composites was studied on V-notched samples using four-point bending at room temperature. The rising K1R behaviour was determined as a function of the crack extension Δa with a crack bridging mechanism being dominant in such behaviour. Significant differences in crack growth rates were found within the same composition of ceramics simply as the crack length varied during crack growth processes. These differences are indicative of the significant influence of microstructural parameters of the ceramics on crack propagation. The peculiarities of stress intensity factor K1 and the crack growth-specific behaviour in ZrB2–SiC particulate ceramic composites are discussed.  相似文献   

4.
Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0–5 wt%) and ZrB2–SiC composites (10–30 vol% SiC) were investigated experimentally over a wide range of temperature (25–1500 °C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2–SiC composites. At around 200 °C, thermal conductivity of ZrB2–SiC composites was found to be composition independent. Thermal conductivity of ZrB2–SiC composites was also correlated with theoretical predictions of the Maxwell–Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2–SiC composites at room temperature were confirmed by Wiedemann–Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2–SiC composites.  相似文献   

5.
Non-isothermal, isothermal and cyclic oxidation behavior of hot pressed ZrB2–20 (vol.%) SiC (ZS) and HfB2–20 SiC (HS) composites have been compared. Studies involving heating in thermogravimetric analyzer have shown sharp mass increases at 740 and 1180 °C for ZS, and mass gain till 1100 °C followed by loss for HS. Isothermal oxidation tests for 1, 24 and 100 h durations at 1200 or 1300 °C have shown formation of partially and completely stable oxide scales after ~24 h exposure for ZS and HS, respectively. X-ray diffraction, scanning electron microscopy and energy or wavelength dispersive spectroscopy has confirmed presence of ZrO2 or HfO2 in oxide scales of ZS or HS, respectively, besides B2O3–SiO2. Degradation appears more severe in isothermally oxidized ZS due to phase transformations in ZrO2; and is worse in HS on cyclic oxidation at 1300 °C with air cooling, because of higher thermal residual stresses in its oxide scale.  相似文献   

6.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

7.
《Ceramics International》2016,42(16):18148-18153
Two laminated ZrB2-SiC based ceramics were prepared by tape casting and subsequent hot pressing, with BN (LZB) and graphite (LZG ) as interface layers. The LZB specimen presents flexural strength of 381 MPa at room temperature and 111 MPa at 1500 °C; while the LZG specimen shows flexural strength of 414 MPa at room temperature and 377 MPa at 1500 °C. In addition, the flexural strength of LZG specimen is always higher than that of the LZB specimen in the temperature range from room temperature to 1500 °C. Such higher strength is attributed to the healing of surface microcracks and pores by the SiO2 glass phase, producing less glass phase in graphite interface layers at high temperature.  相似文献   

8.
《Ceramics International》2016,42(4):5130-5135
In the present work, amorphous CuTiZrNi foils with low melting point of 1133 K were synthesized using a melt-spinning method in argon atmosphere. A ZrB2–SiC ultra high temperature ceramic was brazed at 1153–1253 K for 900 s. The wetting and spreading characteristics of amorphous alloy filler on the ceramic were studied with the sessile drop method. The reaction products between the ZrB2–SiC ceramic and the CuTiZrNi filler were systematic studied by X-ray diffraction and scanning electron microscopy. Also, the formation process of interfacial product of joint was discussed. A maximum room temperature three-point bending strength of 210 MPa of the joint was obtained by reasonable processing. The high temperature strength of the joint was also studied, and the joint was found to exhibit a stable strength (240 MPa) at a high temperature of 873 K. The presence of refractory Ti5Si3 compound was believed to be contributed to the stable high temperature strength.  相似文献   

9.
In this study, near-fully dense ZrB2–SiC–VC (75-20-5 vol%) composite was manufactured through hot pressing at 1850°C under the pressure of 40 MPa for 60 min. Then the oxidation examination of the composite was carried out under different durations and temperatures. The microstructure and phase evolution after hot pressing and oxidation processes were examined by scanning electron microscopy, and X-ray diffractometry. The VC addition led to the formation of ZrC and VSi2 phases, which assisted the densification of the composite by removing ZrO2 from the particles’ surface. The oxides of ZrO2, SiO2, ZrSiO4, V2O5, and VO2 formed distinct layers on the sample during the oxidation at 1700°C for 4 h with a parabolic regimen and activation energy of 177.5 kJ/mol.  相似文献   

10.
Starting with non-stoichiometric Zr–B4C powder mixture ZrB2–ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5–25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97–99% at 1400–1500 °C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17–22 GPa.  相似文献   

11.
《Ceramics International》2020,46(1):156-164
Spark plasma sintering (SPS) route was employed for preparation of quadruplet ZrB2–SiC–ZrC–Cf ultrahigh temperature ceramic matrix composites (UHTCMC). Zirconium diboride and silicon carbide powders with a constant ZrB2:SiC volume ratio of 4:1 were selected as the baseline. Mixtures of ZrB2–SiC were co-reinforced with zirconium carbide (ZrC: 0–10 vol%) and carbon fiber (Cf: 0–5 vol%), taking into account a constant ratio of 2:1 for ZrC:Cf components. The sintered composite samples, processed at 1800 °C for 5 min and 30 MPa punch press under vacuumed atmosphere, were characterized by densitometry, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry as well as mechanical tests such as hardness and flexural strength measurements. The results verified that the composite co-reinforced with 5 vol% ZrC and 2.5 vol% Cf had the optimal characteristics, i.e., it reached a relative density of 99.6%, a hardness of 18 GPa and a flexural strength of 565 MPa.  相似文献   

12.
Fully densified ZrB2–20 vol% SiC composites were produced by reactive pulsed electric current sintering (PECS) of a powder mixture containing ZrH2, B, SiC and B4C within a total thermal cycle time of only 50 min. During the combined synthesis and sintering process, the ZrH2 powder decomposed gradually from ZrH2 into ZrHm and finally metal Zr that reacted with elemental B to form the ZrB2 matrix. Reducing the ZrH2 particle size by attritor milling significantly enhanced densification and allowed initiation of self-propagating high temperature synthesis (SHS) during PECS. The PECS grades exhibited a slightly textured structure, with ≤17% of the ZrB2 grains oriented with their (0 0 1) planes perpendicular to the direction of pressure and DC current. Because of the ZrB2 grain orientation, anisotropic mechanical properties were observed. Ceramics prepared from attritor milled powders and PECS with a pressure applied after 5 min upon reaching 1900 °C achieved excellent flexural strengths of 901–937 MPa. The hardness and fracture toughness were respectively 19.7–19.8 GPa and 4.0–4.7 MPa m1/2 in the direction parallel and 20.2–21.3 GPa and 3.8–3.9 MPa m1/2 in the direction perpendicular to the applied pressure.  相似文献   

13.
High temperature oxidation of ZrB2 and the effect of SiC on controlling the oxidation of ZrB2 in ZrB2–SiC composites were studied in situ, in air, using X-ray diffraction. Oxidation was studied by quantitatively analyzing the crystalline phase changes in the samples, both non-isothermally, as a function of temperature, up to ~1650 °C, as well as isothermally, as a function of time, at ~1300 °C. During the non-isothermal studies, the formation and transformation of intermediate crystalline phases of ZrO2 were also observed. The change in SiC content, during isothermal oxidation studies of ZrB2–SiC composites, was similar in the examined temperature range, regardless of sample microstructure and composition. Higher SiC content, however, markedly retarded the oxidation rate of the ZrB2 phase in the composites. A novel approach to quantify the extent of oxidation by estimating the thickness of the oxidation layer formed during oxidation of ZrB2 and ZrB2–SiC composites, based on fractional conversion of ZrB2 to ZrO2 in situ, is presented.  相似文献   

14.
ZrB2–15 vol.%SiC and ZrB2–30 vol.%SiC composites with smaller starting particle sizes in which the particle sizes of ZrB2 and SiC are 2 μm and 0.5 μm, respectively, demonstrated marked plasticity and significant reduction in the flexural strength at 1800 °C. The flexural strengths of these two composites are 112 ± 12 MPa and 48 ± 10 MPa, respectively, and their corresponding strength retentions are 13% and 7%, respectively. Large ZrB2 grains were commonly observed in the samples containing 15 vol.%SiC, which are always the sites for the crack initiation. Cavities were found in the samples containing 30 vol.%SiC and the grain boundaries are the main sites for the crack and cavity nucleation. To improve ultra-high temperature strength, larger starting particle sizes (ZrB2 and SiC are 5 μm and 2 μm, respectively) were used for the preparation of ZrB2–15 vol.%SiC. This sample fractured in an elastic manner up to 1800 °C and showed a very high strength with a value of 217 ± 16 MPa.  相似文献   

15.
In order to improve the oxidation resistance of C/C composites, a ZrB2–SiC/SiC oxidation protective dual-layer coating was prepared by a pack cementation combined with the slurry paste method. The phase and microstructure of the coating were characterised by X-ray diffraction, scanning electron microscope and energy-dispersive spectrometer analyses. The anti-oxidation and thermal shock resistance of the coating were also investigated. It was found that the ZrB2–SiC/SiC coating could effectively improve the oxidation resistance of the C/C composites. The weight loss of the coated samples was only 1.8% after oxidation at 1773?K for 18?h in air. The coating endured 20 thermal shock cycles between 1773?K and room temperature with only 4.6% weight loss.  相似文献   

16.
The oxidation performance of ZrB2–SiC ultra-high temperature ceramics with SiC content ranging from 20 to 80 vol% has been evaluated at 1773 K for 50 h and at 2073 K for 20 min. Oxidation reaction pathways were interpreted using volatility diagrams of the ZrB2–SiC system. At 1773 K for 50 h, all ZrB2–SiC composites from 20 to 80 vol% SiC formed a protective SiO2 surface coating. Samples with ≤50 vol% SiC developed a distinguishable SiC-depleted layer at 1773 K and 2073 K. High temperature torch testing for 20 min at approximately 2073 K revealed that samples with ≥65 vol% SiC exhibit a depression under the torch flame. Samples rich in ZrB2 were dominated by a ZrO2 layer after a similar exposure. The overall weight density of ultra-high temperature ceramics can be reduced with improved oxidation performance at 1773 K by adding at least 65 vol% SiC.  相似文献   

17.
Raman spectroscopy and neutron diffraction were used to study the stresses generated in zirconium diboride–silicon carbide (ZrB2–SiC) ceramics. Dense, hot pressed samples were prepared from ZrB2 containing 30 vol% α-SiC particles. Raman patterns were acquired from the dispersed SiC particulate phase within the composite and stress values were calculated to be 810 MPa. Neutron diffraction patterns were acquired for the ZrB2–SiC composite, as well as pure ZrB2 and SiC powders during cooling from ~1800 °C to room temperature. A residual stress of 775 MPa was calculated as a function of temperature by comparing the lattice parameter values for ZrB2 and SiC within the composite to those of the individual powders. The temperature at which stresses began to accumulate on cooling was found to be ~1400 °C based on observing the deviation in lattice parameters between pure powder samples and those of the composite.  相似文献   

18.
《Ceramics International》2015,41(6):7677-7686
Ablation behavior of ZrB2–SiC protective coating for carbon/carbon composites during oxyacetylene flame test at 2500 °C was investigated by analyzing the microstructure differentiation caused by the increasing intensity of ablation from the border to the center of the surface. After ablation, a continuous SiO2 scale, a porous SiO2 layer inlaid with fine ZrO2 nuclei, and a continuous ZrO2 scale respectively emerged in the border region, the transitional region, and the center region. In order to investigate the ablation microstructure in the initial stage, the sub-layer microstructure was characterized and found to be mainly formed by coral-like structures of ZrO2, which showed huge difference with the continuous structure of ZrO2 on the surface layer. A kinetic model concerning the thickness change induced by volatilization and oxidation during ablation was built to explain the different growth mechanisms of the continuous ZrO2 scale and the coral-like ZrO2 structure.  相似文献   

19.
In this paper, MWCNTs–SiC composites were prepared by non aqueous tape casting and hot pressing. The dispersion of MWCNTs was investigated and correlated to the Hansen solubility parameters. The microstructure and mechanical properties of the obtained MWCNTs–SiC composites were studied. It was found that the MWCNTs were retained after sintering. An improvement in toughness was resulted with the MWCNTs content as low as 0.25 mass%. The present research provides a facile route for the preparation of ceramic–MWCNTs composites with improved properties.  相似文献   

20.
Camphene-based freeze casting technique was adopted to fabricate ZrB2–SiC porous ceramic with 3-dimensional (3D) pore network. ZrB2–SiC/camphene slurries (initial solid loading: 20 vol%, 25 vol% and 30 vol%) were prepared for freeze casting. Regardless of initial solid loading, the fabricated sample had dense/porous dual microstructure. The thickness of dense layer was about 200–300 μm. The microstructures of ZrB2–SiC porous ceramics were significantly influenced by the initial solid loading, which determines the pore size, porosity and mechanical properties of the final products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号