首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper reports the effect of Fe2O3 doping on the densification and grain growth in yttria-stabilized zirconia (YSZ) during sintering at 1150 °C for 2 h. Fe2O3 doped 3 mol% YSZ (3YSZ) and 8 mol% YSZ (8YSZ) coatings were produced using electrophoretic deposition (EPD). For 0.5 mol% Fe2O3 doping, both 3YSZ and 8YSZ coatings during sintering at 1150 °C has similar densification. However, a significant grain growth occurred in 8YSZ during sintering, whereas grain size remains almost constant in 3YSZ. XRD results suggest that Fe2O3 addition substitutionally and interstitially dissolved into the lattice of 3YSZ and 8YSZ. In addition, colour of 3YSZ and 8YSZ changes differently with doping of Fe2O3. A Fe3+ ion interstitial diffusion mechanism is proposed to explain the densification and grain growth behaviour in the Fe2O3 doped 3YSZ and 8YSZ. A retard grain growth observed in the Fe2O3 doped 3YSZ is attributed to Fe3+ segregation at grain boundary.  相似文献   

2.
Bulk and grain boundary diffusion of Nb5+ cations in yttria-stabilized zirconia (YSZ, 8 mol% Y2O3–92 mol% ZrO2) and in titania-doped yttria-stabilized zirconia (Ti–YSZ, 5 mol% TiO2–8 mol% Y2O3–87 mol% ZrO2) was studied in air in the temperature range from 900 to 1300 °C. Experiments were performed in the B-type kinetic region. Diffusion profiles were determined using the secondary ion mass spectrometry (SIMS). The temperature dependencies of the bulk diffusion coefficient D and the grain boundary diffusion parameter Dδs for both the materials were calculated. The activation energies of these transport processes in YSZ amounts to 258 and 226 kJ mol−1, respectively, and 232 and 114 kJ mol−1 in Ti–YSZ. The results were compared to the diffusion data of other cations previously obtained for the same material.  相似文献   

3.
We have studied the sintering kinetic of 3 and 8 mol% of yttria stabilized zirconia under isothermal conditions. Sintering was performed in the temperature range between 1200 and 1450 °C. The sintering kinetic process was followed by measuring density as a function of sintering time. A model was applied to the first stage of densification. Sintering obeys to the grain boundary diffusion mechanism for both materials. It was possible to calculate the activation energy as well as the diffusion coefficients. 887 and 731 kJ mol?1 were the activation energies for the initial stage of sintering for 3YTZ and 8YSZ respectively.Finally the diffusion activation energy was estimated for both materials. The diffusion coefficients were also estimated at 1400 °C in 4.05×10?14 and 6.00×10?11 cm2 s?1 for tetragonal and cubic zirconia respectively. The obtained results support the observations of a faster densification for 8YSZ.  相似文献   

4.
The sintering behavior of commercially available granulated ZrO2–3 mol% Y2O3 (3Y-TZP) powder compacts with an aggregate size of 75 nm was studied. The shrinkage response of the powder compacts during non-isothermal sintering was measured in a sensitive dilatometer at different heating rates. Densification and grain growth were also studied after isothermal firing in air according to different sintering cycles. The sintering and grain growth activation energy was estimated to be QS = 485 ± 12 kJ mol?1 and QG = 546 ± 23 kJ mol?1, respectively. Using the estimated Q-values, the master curves for sintering and grain growth were established and used for prediction of the densification and microstructural development under different thermal histories. A good agreement between the model predictions and experimental result was obtained.  相似文献   

5.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

6.
《Ceramics International》2016,42(7):8559-8564
In this work NiO/3 mol% Y2O3–ZrO2 (3YSZ) and NiO/8 mol% Y2O3–ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni–8YSZ the porosity and shrinkage of Ni–3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni–3YSZ and Ni–8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67 W cm−2 at 800 °C, respectively. Furthermore, in order to improve the cell performance, a Ni–8YSZ anode functional layer was added between the electrolyte and Ni–YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73 W cm−2 were achieved at 800 °C for single cells with Ni–3YSZ and Ni–8YSZ hollow fibers, respectively.  相似文献   

7.
《Ceramics International》2016,42(3):3849-3854
The effects of the addition of BaO on the sinterability, phase balance, microstructure, and mechanical properties of 8 mol% yttria-stabilized cubic zirconia (8YSZ) were investigated using scanning electron microscopy, X-ray diffraction (XRD) analyses, and micro-hardness testing. The 8YSZ powder was doped with 0–15 wt% BaO using a colloidal process. The undoped and BaO-doped 8YSZ specimens were sintered at 1550 °C for 1 h. The XRD analyses results showed that the specimens doped with up to 1 wt% BaO did not exhibit BaO-related peaks, indicating that BaO was completely solubilized in the 8YSZ matrix. However, when more than 1 wt% BaO was added, BaZrO3-related peaks appeared, suggesting that the overdoped BaO did not dissolve in the 8YSZ matrix but formed a secondary phase of BaZrO3 at high temperatures. Grain size measurements showed that the grain size of 8YSZ decreased with an increase in the amount of BaO added. The decrease in the grain size was owing to the fact that the grains of BaZrO3, which precipitated at the grain boundaries and grain junctions of 8YSZ, increased the grain boundary cohesive resistance because of the pinning effect. This resulted in a decrease in the grain boundary mobility, and an increase in the grain boundary energy. Furthermore, while the addition of BaO to 8YSZ caused a slight decrease in the hardness of 8YSZ, the fracture toughness of 8YSZ increased from 1.64 MPa m1/2 to 2.08 MPa m1/2, owing to the resulting decrease in the grain size.  相似文献   

8.
The sintering behavior of porous Ce0.9Gd0.1O1.95 (CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine the dominant sintering mechanisms and kinetics, both in isothermal and at constant heating rate (iso-rate) conditions. Densification of porous CGO10 tape is thermally activated with typical activation energy which was estimated around 440–470 kJ mol?1. Grain growth showed similar thermal activation energy of ~427 ± 22 kJ mol?1 in the temperature range of 1100–1250 °C. Grain-boundary diffusion was identified to be the dominant mechanism in porous CGO10 tapes. Grain growth and densification mechanism were found strictly related in the investigated temperature range. Porosity acts as a grain growth inhibitor and grain boundary mobility in the porous body was estimated around 10?18–10?16 m3 N?1 s?1 at the investigated temperature range.  相似文献   

9.
3Y-TZP (yttria-doped tetragonal zirconia) and CuO nano powders were prepared by co-precipitation and copper oxalate complexation–precipitation techniques, respectively. During sintering of powder compacts (8 mol% CuO-doped 3Y-TZP) of this two-phase system several solid-state reactions clearly influence densification behaviour. These reactions were analysed by several techniques like XPS, DSC/TGA and high-temperature XRD. A strong dissolution of CuO in the 3Y-TZP matrix occurs below 600 °C, resulting in significant enrichment of CuO in a 3Y-TZP grain-boundary layer with a thickness of several nanometres. This “transient” liquid phase strongly enhances densification. Around 860 °C a solid-state reaction between CuO and yttria as segregated to the 3Y-TZP grain boundaries occurs, forming Y2Cu2O5. This solid-state reaction induces the formation of the thermodynamic stable monoclinic zirconia phase. The formation of this solid phase also retards densification. Using this knowledge of microstructural development during sintering it was possible to obtain a dense nano–nano composite with a grain size of only 120 nm after sintering at 960 °C.  相似文献   

10.
《Ceramics International》2016,42(14):15618-15622
Fe2O3 powders were introduced as sintering aid to fabricate yttria-stabilized zirconia (YSZ) hollow fiber membranes using a combined wet-spinning and post-sintering method. The obtained Fe2O3-YSZ hollow fiber membranes show enhanced performance for water treatment with fine crystal structure in terms of bending strength and pure water permeability. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA) along with mechanical tests were employed to investigate the structural evolution in the sintering process and the effect of Fe2O3. It is suggested that the Fe2O3 dopants dissolve into YSZ at elevated temperatures, providing defect sites and vacancies for fast ion migration, favoring for densification and grain growth of the YSZ, which yields dense microstructures of fine crystallites at relatively low sintering temperature. The Fe2O3-YSZ hollow fiber membranes sintered at 1150 °C show a 3-fold increase of the permeate flux of pure water (F) (743 L m−2 h−1) along with comparable bending strength (152 MPa) compared to pure YSZ membranes. This modified method can reduce sintering costs and therefore fabrication costs which should pave the way for scale-up production for ceramic hollow fiber membranes.  相似文献   

11.
The sintering behavior of Y2O3 doped with 1 mol% of Ca2+, Mg2+, Mn2+, Ni2+, Sr2+ or Zn2+ was investigated by pressureless sintering in air at a sintering temperature in the range 900–1600 °C. The sintering temperature required for full densification in Y2O3 was reduced by 100–400 °C by the cation doping, while undoped Y2O3 was densified at 1600 °C. The most effective dopant among the examined cations was Zn2+. The grain growth kinetics of undoped and cation-doped Y2O3 was described by the parabolic law. The grain boundary mobility of Y2O3 was accelerated by doping of the divalent cations. High-resolution transmission electron microscopy (HRTEM) observations and nano-probe X-ray energy dispersive spectroscopy (EDS) analyses confirmed that the dopant cations tended to segregate along the grain boundaries without forming amorphous layers. The improved sinterability of Y2O3 is probably related to the accelerated grain boundary diffusion owing to the grain boundary segregation of the dopant cations.  相似文献   

12.
Aluminum borocarbide powders (Al3BC3 and Al8B4C7) were synthesized, and the ternary powders were used as a sintering additive of SiC. The densification of SiC was nearly completed at 1670 °C using spark plasma sintering (SPS) and pressureless sintering was possible at 1950 °C. The sintering behavior of SiC using the new additive systems was nearly identical with that using the conventional Al–B–C system, but grain growth was suppressed when adding the borocarbides. In addition, oxidation of the fine additive powders did not intensively occur in air, which has been a problem in the case of the Al–B–C system for industrial application. The hardness, Young's modulus and fracture toughness of a sintered SiC specimen were 21.6 GPa, 439 GPa and 4.6 MPa m1/2, respectively. The ternary borocarbide powders are efficient sintering additives of SiC.  相似文献   

13.
The sintering behavior of Ce0.9Gd0.1O1.95 (CGO) tape cast layers with different porosity was investigated by an extensive characterization of densification, microstructural evolution, and applying the constitutive laws of sintering. The densification of CGO tapes associates with grain coarsening process at the initial sintering stage at T < 1150 °C, which is mainly influenced by small pores and intrinsic characteristics of the starting powders. At the intermediate sintering stage, densification is remarkably influenced by large porosity. Moreover, the sintering constitutive laws indicate that increasing the initial porosity from 0.38 to 0.60, the densification at the late stage is thermally activated with typical activation energy values increasing from 367 to 578 kJ mol−1. Similar effect of the porosity is observed for the thermally activated phenomena leading to grain growth in the CGO tapes. The analysis of sintering mechanisms reveals that the grain growth behavior at different porosity can be described using an identical master curve.  相似文献   

14.
The influence of sintering temperature, holding time and pressure condition on densification and mechanical properties of bulk titanium carbide (TiC) fabricated by SPS sintering has been systematically investigated. Experimental data demonstrated that relative density and Vickers hardness (HV) increase with sintering temperature and holding time, but fracture toughness (KIC) was not significantly influenced by sintering parameters. The HV and relative density of samples consolidated by SPS technique at 1600 °C for 5 min under 50 MPa pressure (applied entire sintering cycle) reached 30.31 ± 2.23 GPa and 99.90%, respectively. HV values of ~24–30 GPa and KIC of ~3.7–5 MPa m1/2 were obtained in all bulk samples with relative densities of 95.61–99.90% when fabricated under various conditions presented above, without abnormal grain growth. More pronounced effects of pressure condition on grain growth (promoted by grain-boundary diffusion) than on densification were observed. The relationship of fracture toughness and fracture mode is also discussed.  相似文献   

15.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

16.
A 500 nm thick thin film YSZ (yttria-stabilized zirconia) electrolyte was successfully fabricated on a conventionally processed anode substrate by spin coating of chemical solution containing slow-sintering YSZ nanoparticles with the particle size of 20 nm and subsequent sintering at 1100 °C. Incorporation of YSZ nanoparticles was effective for suppressing the differential densification of ultrafine precursor powder by mitigating the prevailing bi-axial constraining stress of the rigid substrate with numerous local multi-axial stress fields around them. In particular, adding 5 vol% YSZ nanoparticles resulted in a dense and uniform thin film electrolyte with narrow grain size distribution, and fine residual pores in isolated state. The thin film YSZ electrolyte placed on a rigid anode substrate with the GDC (gadolinia-doped ceria) and LSC (La0.6Sr0.4CoO3?δ) layers deposited by PLD (pulsed laser deposition) processes revealed that it had fairly good gas tightness relevant to a SOFC (solid oxide fuel cell) electrolyte and maintained its structural integrity during fabrication and operation processes. In fact, the open circuit voltage was 1.07 V and maximum power density was 425 mW/cm2 at 600 °C, which demonstrates that the chemical solution route can be a viable means for reducing electrolyte thickness for low- to intermediate-temperature SOFCs.  相似文献   

17.
Degradation due to molten salt attack is one of the failure mechanisms of thermal barrier coatings. Thermochemical attack of the salt mixture Na2SO4–30 mol% NaVO3 on ZrO2–8 mol% YO1.5 (8YSZ) at 950 °C was studied by two types of experiments. Sintered compacts were exposed to 25 mg cm?2 salt dosage for up to 96 h. In the other set of experiments, 10–35 wt.% 8YSZ powder was mixed with the salts to study the dissolution of 8YSZ in the molten salt. The role of volatile losses was also examined. The results show that more than 25 wt.% 8YSZ dissolves in the sulphate-vanadate melt at 950 °C, followed by slow reactions to form YVO4 and NaYV2O7 at 950 °C. The unreacted Y2O3 and monoclinic ZrO2 precipitate out separately during rapid cooling (~300 °C/min). Slow cooling at ~3 °C/min leads to the formation of ZrOS apart from ZrO2 and Y2O3.  相似文献   

18.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

19.
The sintering kinetics in La0.85Sr0.15MnO3–Ce0.9Gd0.1O1.95 (LSM–CGO) porous composite was studied by applying a two-stage master sintering curve (MSC) approach and comparing with LSM and CGO single-phase materials. In the two-stage MSC, sintering mechanisms occurring at different stages were separated with respect of density, giving a typical apparent activation energy values for each sintering stage of the LSM–CGO system. Compared with the single-phase materials, retardant effect of the different phases on mass diffusion leads to much higher apparent activation energy for densification of the composite. Similarly, constrain effect was also observed in grain growth in the composite. Particularly, in the investigated temperature range (1100–1250 °C), the determined grain boundary mobility of CGO in the LSM–CGO composite (10−18–10−16 m3 N−1 s−1) is comparable with the single-phase CGO, while the grain boundary mobility of LSM in the composite (10−17–10−16 m3 N−1 s−1) is around 1 order of magnitude smaller than the single-phase LSM.  相似文献   

20.
Two-step sintering (TSS) was applied to control the grain growth during sintering of a novel calcium magnesium silicate (Ca3MgSi2O8 – Merwinite) bioceramic. Sol–gel derived nanopowders with the mean particle size of about 90 nm were sintered under different TSS regimes to investigate the effect of sintering parameters on densification behavior and grain growth suppression. Results showed that sintering of merwinite nanopowder under optimum TSS condition (T1 = 1300 °C, T2 = 1250 °C) yielded fully dense bodies with finest microstructure. Merwinite compacts held at T2 = 1250 °C for 20 h had the average grain size of 633 nm while the relative density of about 98% was achieved. Mechanical testing was performed to investigate the effect of grain growth suppression on the hardness and fracture toughness. Comparison of mechanical data for samples sintered under two sintering regimes, including TSS and normal sintering (NS), showed TSS process resulted in significant enhancement of fracture toughness from 1.77 to 2.68 MPa m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号