共查询到20条相似文献,搜索用时 15 毫秒
1.
The accuracy of distinguishing amino-terminal signal peptides from cytosolic proteins has been improved to 95% by combining a neural network classifier with von Heijne's statistical prediction, the latter is itself 85-90% reliable. The network processed not the cleavage site, but amino-terminal 20-residue segments by the 'tiling' algorithm. Concordant positive predictions of both methods led to the safe identification of 496 novel signal peptides from the Protein Identification Resources. 相似文献
2.
Po-Yung Chang Marius Evers Yale N. Patt 《International journal of parallel programming》1997,25(5):339-362
A deeply pipelined superscalar processor needs an accurate branch predictor in order to approach its performance potential.
The 2-level branch predictors have been shown to achieve high prediction accuracy, yet they still suffer a significant number
of mispredictions. It has been shown that a number of these mispredictions are due to interference in the pattern history
tables. This paper details a method for reducing the amount of pattern history table interference by dynamically identifying
some easily predictable branches and inhibiting the pattern history table update for these branches. We show that inhibiting
the update in this manner reduces the amount of destructive interference in the global history variation of the 2-level branch
predictor, resulting in significantly improved branch prediction accuracy for the SPEC 95 benchmarks. For example, for a 2
K Byte gshare predictor, we eliminate 38% of the mispredictions for the gcc benchmark. 相似文献
3.
小波与神经网络相结合的网络流量预测模型 总被引:1,自引:0,他引:1
针对网络流量序列的非线性和多时间尺度特性,提出了一种将小波变换与人工神经网络相结合进行网络流量预测的新模型.该模型吸取了小波变换的多分辨功能和人工神经网络的非线性逼近能力,对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,分别使用RBF神经网络和Elman神经网络进行预测,把两种预测的结果通过BP神经网络合成为最终预测结果.用实际网络流量对该模型进行验证,结果表明,该模型具有较高的预测效果. 相似文献
4.
用多样性粒子群算法优化神经网络的网络结构和连接权,获得神经网络集成个体;进一步用二次规划方法,计算各集成个体的最优非负权系数进行组合集成,生成神经网络集成的输出结论,进行短期降水预报建模研究.以广西全区的月降水量实例分析,结果表明该方法能有效提高系统的泛化能力. 相似文献
5.
6.
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line. 相似文献
7.
8.
Improving the prediction accuracy of recommendation algorithms: Approaches anchored on human factors
《Interacting with computers》2006,18(3):410-431
Recommender systems are a special class of personalized systems that aim at predicting a user's interest on available products and services by relying on previously rated items or item features. Human factors associated with a user's personality or lifestyle, although potential determinants of user behavior are rarely considered in the personalization process. In this paper, we demonstrate how the concept of lifestyle can be incorporated in the recommendation process to improve the prediction accuracy by efficiently managing the problem of limited data availability. We propose two approaches: one relying on lifestyle alone and another integrating lifestyle within the nearest neighbor approach. Both approaches are empirically tested in the domain of recommendations for personalized television advertisements and are shown to outperform existing nearest neighborhood approaches in most cases. 相似文献
9.
Improving model accuracy using optimal linear combinations of trained neural networks 总被引:5,自引:0,他引:5
Neural network (NN) based modeling often requires trying multiple networks with different architectures and training parameters in order to achieve an acceptable model accuracy. Typically, only one of the trained networks is selected as "best" and the rest are discarded. The authors propose using optimal linear combinations (OLC's) of the corresponding outputs on a set of NN's as an alternative to using a single network. Modeling accuracy is measured by mean squared error (MSE) with respect to the distribution of random inputs. Optimality is defined by minimizing the MSE, with the resultant combination referred to as MSE-OLC. The authors formulate the MSE-OLC problem for trained NN's and derive two closed-form expressions for the optimal combination-weights. An example that illustrates significant improvement in model accuracy as a result of using MSE-OLC's of the trained networks is included. 相似文献
10.
The selection of stationary or non-stationary Kriging to create a surrogate model of a black box function requires apriori knowledge of the nature of response of the function as these techniques are better at representing some types of responses than others. While an adaptive technique has been previously proposed to adjust the level of stationarity within the surrogate model such a model can be prohibitively expensive to construct for high dimensional problems. An alternative approach is to employ a surrogate model constructed from an ensemble of stationary and non-stationary Kriging models. The following paper assesses the accuracy and optimization performance of such a modelling strategy using a number of analytical functions and engineering design problems. 相似文献
11.
针对一般小波神经网络存在的学习时间长,网络预测精度低的问题,提出了对网络输入层权值初始值进行归一化处理的优化方法,改进了原有小波神经网络。将改进后的模型应用于某市轨道交通1号线珠江路站深基坑水平变形预测中。监测结果表明,网络输出值与实测值吻合很好,优化后的小波神经网络收敛速度也更快;同时随着大量最新的监测数据输入到网络中学习,将使深基坑水平变形预测更加精确。 相似文献
12.
Interoperability, defined as the satisfaction of a communication need between two or more actors, is an important aspect in many phases of an enterprise’s development. Mastering the field of interoperability is a daunting task so aid in predicting interoperability can be of great benefit. Formalisms capable of such predictions of future information system architectures are however sparse, and when employed, it is essential that the prediction is accurate. In this paper, a previously proposed interoperability modelling and prediction language is subjected to case testing and evaluated toward interoperability predictions made by practitioners and experts in the field. The results show that although there are some areas not currently covered by the framework, in general, it performs better than the intended users, and would thereby provide additional support in various development and design contexts. 相似文献
13.
Multimedia Tools and Applications - The concentration of PM2.5 is closely related to air, environmental quality and human health. In this study, an hourly prediction method of PM2.5 concentration... 相似文献
14.
Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures 总被引:1,自引:0,他引:1
An improved neuro-wavelet modeling (NWM) methodology is presented, and it aims at improving prediction precision of time-varying behavior of engineering structures. The proposed methodology distinguishes from the existing NWM methodology by featuring the distinctive capabilities of constructing optimally uncoupled dynamic subsystems in light of the redundant Haar wavelet transform (RHWT) and optimizing neural network. In particular, two techniques of imitating wavelet packet transform of RHWT and reconstructing the major crests of power spectrum of analyzed data are developed with the aim of constructing the optimally uncoupled dynamic subsystems from time-varying data. The resulting uncoupled dynamic subsystems make the underlying dynamic law of time-varying behavior more tractable than the raw scale subwaves arose from the RHWT, and they provide a platform for multiscale modeling via individual modeling at the uncoupled dynamic subsystem level. Furthermore, on each uncoupled dynamic subsystem, the technique of optimal brain surgeon in conjunction with a new dynamic mechanism refreshing is employed to optimize the neural network, and the recombination of the modeling outcomes on every subsystem constitutes the overall modeling of time-varying behavior. The improved NMW methodology offers a feasible framework of multiscale modeling due to its flexibility, adaptability and rationality, and it is particularly useful for prediction applications of time-varying behavior of engineering structures. As an illustrative example, the improved NWM methodology is applied to model and forecast dam deformation, and the results show that the methodology possesses positive advantages over the existing multiscale and single scale modeling techniques. The improved NMW methodology is promising and valuable for the safety monitoring and extreme event warning of engineering structures. 相似文献
15.
Georgiadis P Cavouras D Kalatzis I Daskalakis A Kagadis GC Sifaki K Malamas M Nikiforidis G Solomou E 《Computer methods and programs in biomedicine》2008,89(1):24-32
The aim of the present study was to design, implement and evaluate a software system for discriminating between metastatic and primary brain tumors (gliomas and meningiomas) on MRI, employing textural features from routinely taken T1 post-contrast images. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a non-linear least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 67 T1-weighted post-contrast MR images (21 metastases, 19 meningiomas and 27 gliomas). LSFT enhanced the performance of the PNN, achieving classification accuracies of 95.24% for discriminating between metastatic and primary tumors and 93.48% for distinguishing gliomas from meningiomas. To improve the generalization of the proposed classification system, the external cross-validation method was also used, resulting in 71.43% and 81.25% accuracies in distinguishing metastatic from primary tumors and gliomas from meningiomas, respectively. LSFT improved PNN performance, increased class separability and resulted in dimensionality reduction. 相似文献
16.
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry, with its persistent quest for high-performance predictive models, is in great need of this new learning methodology. A marginal improvement in the prediction indices of petroleum reservoir properties could have huge positive impact on the success of exploration, drilling and the overall reservoir management portfolio. Support vector machines (SVM) is one of the promising machine learning tools that have performed excellently well in most prediction problems. However, its performance is a function of the prudent choice of its tuning parameters most especially the regularization parameter, C. Reports have shown that this parameter has significant impact on the performance of SVM. Understandably, no specific value has been recommended for it. This paper proposes a stacked generalization ensemble model of SVM that incorporates different expert opinions on the optimal values of this parameter in the prediction of porosity and permeability of petroleum reservoirs using datasets from diverse geological formations. The performance of the proposed SVM ensemble was compared to that of conventional SVM technique, another SVM implemented with the bagging method, and Random Forest technique. The results showed that the proposed ensemble model, in most cases, outperformed the others with the highest correlation coefficient, and the lowest mean and absolute errors. The study indicated that there is a great potential for ensemble learning in petroleum reservoir characterization to improve the accuracy of reservoir properties predictions for more successful explorations and increased production of petroleum resources. The results also confirmed that ensemble models perform better than the conventional SVM implementation. 相似文献
17.
The vulnerabilities in the Communication (TCP/IP) protocol stack and the availability of more sophisticated attack tools breed in more and more network hackers to attack the network intentionally or unintentionally, leading to Distributed Denial of Service (DDoS) attack. The DDoS attacks could be detected using the existing machine learning techniques such as neural classifiers. These classifiers lack generalization capabilities which result in less performance leading to high false positives. This paper evaluates the performance of a comprehensive set of machine learning algorithms for selecting the base classifier using the publicly available KDD Cup dataset. Based on the outcome of the experiments, Resilient Back Propagation (RBP) was chosen as base classifier for our research. The improvement in performance of the RBP classifier is the focus of this paper. Our proposed classification algorithm, RBPBoost, is achieved by combining ensemble of classifier outputs and Neyman Pearson cost minimization strategy, for final classification decision. Publicly available datasets such as KDD Cup, DARPA 1999, DARPA 2000, and CONFICKER were used for the simulation experiments. RBPBoost was trained and tested with DARPA, CONFICKER, and our own lab datasets. Detection accuracy and Cost per sample were the two metrics evaluated to analyze the performance of the RBPBoost classification algorithm. From the simulation results, it is evident that RBPBoost algorithm achieves high detection accuracy (99.4%) with fewer false alarms and outperforms the existing ensemble algorithms. RBPBoost algorithm outperforms the existing algorithms with maximum gain of 6.6% and minimum gain of 0.8%. 相似文献
18.
基于Bagging的组合k-NN预测模型与方法 总被引:1,自引:0,他引:1
k-近邻方法基于单一k值预测,无法兼顾不同实例可能存在的特征差异,总体预测精度难以保证.针对该问题,提出了一种基于Bagging的组合k-NN预测模型,并在此基础上实现了具有属性选择的Bgk-NN预测方法.该方法通过训练建立个性化预测模型集合,各模型独立生成未知实例预测值,并以各预测值的中位数作为组合预测结果.Bgk-NN预测可适用于包含离散值属性及连续值属性的各种类型数据集.标准数据集上的实验表明,Bgk-NN预测精度较之传统k-NN方法有了明显提高. 相似文献
19.
Rahib H. Abiyev 《Neural computing & applications》2011,20(2):249-259
This paper presents the development of fuzzy wavelet neural network system for time series prediction that combines the advantages
of fuzzy systems and wavelet neural network. The structure of fuzzy wavelet neural network (FWNN) is proposed, and its learning
algorithm is derived. The proposed network is constructed on the base of a set of TSK fuzzy rules that includes a wavelet
function in the consequent part of each rule. A fuzzy c-means clustering algorithm is implemented to generate the rules, that is the structure of FWNN prediction model, automatically,
and the gradient-learning algorithm is used for parameter identification. The use of fuzzy c-means clustering algorithm with the gradient algorithm allows to improve convergence of learning algorithm. FWNN is used
for modeling and prediction of complex time series and prediction of foreign-exchange rates. Exchange rates are dynamic process
that changes every day and have high-order nonlinearity. The statistical data for the last 2 years are used for the development
of FWNN prediction model. Effectiveness of the proposed system is evaluated with the results obtained from the simulation
of FWNN-based systems and with the comparative simulation results of previous related models. 相似文献
20.
This paper studies the greedy ensemble selection family of algorithms for ensembles of regression models. These algorithms search for the globally best subset of regressors by making local greedy decisions for changing the current subset. We abstract the key points of the greedy ensemble selection algorithms and present a general framework, which is applied to an application domain with important social and commercial value: water quality prediction. 相似文献