共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiang-Yang Wang Author Vitae Ting Wang Author Vitae Author Vitae 《Pattern recognition》2011,44(4):777-787
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. In this paper, we present a color image segmentation using pixel wise support vector machine (SVM) classification. Firstly, the pixel-level color feature and texture feature of the image, which is used as input of SVM model (classifier), are extracted via the local homogeneity model and Gabor filter. Then, the SVM model (classifier) is trained by using FCM with the extracted pixel-level features. Finally, the color image is segmented with the trained SVM model (classifier). This image segmentation not only can fully take advantage of the local information of color image, but also the ability of SVM classifier. Experimental evidence shows that the proposed method has a very effective segmentation results and computational behavior, and decreases the time and increases the quality of color image segmentation in comparison with the state-of-the-art segmentation methods recently proposed in the literature. 相似文献
2.
Color image segmentation using automatic pixel classification with support vector machine 总被引:1,自引:0,他引:1
Xiang-Yang Wang Qin-Yan Wang Hong-Ying Yang Juan BuAuthor vitae 《Neurocomputing》2011,74(18):3898-3911
Automatic segmentation of images is a very challenging fundamental task in computer vision and one of the most crucial steps toward image understanding. In this paper, we present a color image segmentation using automatic pixel classification with support vector machine (SVM). First, the pixel-level color feature is extracted in consideration of human visual sensitivity for color pattern variations, and the image pixel's texture feature is represented via steerable filter. Both the pixel-level color feature and texture feature are used as input of SVM model (classifier). Then, the SVM model (classifier) is trained by using fuzzy c-means clustering (FCM) with the extracted pixel-level features. Finally, the color image is segmented with the trained SVM model (classifier). This image segmentation not only can fully take advantage of the local information of color image, but also the ability of SVM classifier. Experimental evidence shows that the proposed method has a very effective segmentation results and computational behavior, and decreases the time and increases the quality of color image segmentation in compare with the state-of-the-art segmentation methods recently proposed in the literature. 相似文献
3.
Domenec Puig Author Vitae Miguel Angel Garcia Author Vitae 《Pattern recognition》2006,39(11):1996-2009
Pixel-based texture classifiers and segmenters are typically based on the combination of texture feature extraction methods that belong to a single family (e.g., Gabor filters). However, combining texture methods from different families has proven to produce better classification results both quantitatively and qualitatively. Given a set of multiple texture feature extraction methods from different families, this paper presents a new texture feature selection scheme that automatically determines a reduced subset of methods whose integration produces classification results comparable to those obtained when all the available methods are integrated, but with a significantly lower computational cost. Experiments with both Brodatz and real outdoor images show that the proposed selection scheme is more advantageous than well-known general purpose feature selection algorithms applied to the same problem. 相似文献
4.
针对人体x光图像中的骨骼影像在分割过程中局部出现过度分割或欠分割的现象,提出了一种基于统计区域纹理的检测方法。对检测出不符合分割要求的局部影像,在再次分割前,分别采用补偿灰度或收缩分割区域的方式调整。实验结果表明,该算法能检测出分割后图像的局部性质,并能有效改善过度分割和欠分割的现象,分割后的影像可为下一步的模式识别提供一定的基础。 相似文献
5.
基于多FART神经网络的彩色图像分割 总被引:1,自引:0,他引:1
提出了一种适用于彩色图像分割技术的多模糊自适应谐振(FART)神经网络结构.网络的输入为RGB色彩空间的彩色图像,并将其转换为HSV色彩空间的三组彩色分量-色调,亮度和饱和度,而后利用多FART神经网络的分类能力,将三组分量进行分类的图像输入到决策层,经过融合和分割处理后,最终得到正确的彩色分割图像.与彩色分水岭算法相比,采用上述图像分割算法得到了较好的分割效果. 相似文献
6.
A fast boundary finding algorithm is presented which works without threshold operation and without any interactive control. The procedure can be described as a hierarchical two-step algorithm. In the first step the image is divided into two disjunct regions, one of them including the whole object of interest.In the second step the problem of boundary finding is suggested as a classification problem, which means that for any pixel a four-dimensional feature vector is computed which allows classification of pixels into contour elements and any other pixels.The algorithm was tested on several thousand cell images and can be easily adapted to other problems by modification of a set of parameters. 相似文献
7.
史婷婷 《计算机工程与设计》2008,29(19)
以IC芯片彩色图像为研究对象,分析了迭代阈值法,松弛迭代算法,颜色空间聚类算法在此类图像分割中的不足,并改进迭代阈值法,对原始图像进行颜色空间转换,由RGB空间转化到CIE Lab空间;同时利用八叉树算法对图像进行8位量化,对得到的灰度图像进行迭代阈值分割得到最佳阈值,从而提出了专门针对彩色图像背景分割的彩色迭代阙值法.最后基于Visual Studio6.0平台实现上述4种方法,并通过对比实验证明本文所采用的方法的可行性和实用性. 相似文献
8.
在区域合并过程中,手工设置颜色相似性和边界距离的权重极大地影响了分割的精度和自动化.针对这一问题,提出了一种新的基于区域分级合并的彩色图像分割算法.该方法能够根据邻接区域的边界特点设置权重因子,从而自适应地融合区域的颜色相似性和边界距离.使用均值漂移算法对图像进行初始分割,将原图像分割为具有较好边界的同质区域;通过计算区域相似度对区域进行分级合并.多幅彩色图像的分割实验结果证明,所提算法优于传统的基于区域合并的方法. 相似文献
9.
基于改进区域生长算法的彩色图像分割 总被引:1,自引:0,他引:1
本文提出一种改进的区域生长算法.该算法利用颜色分类结果和连续图像的相似性,改进了种子搜索方法,与全局搜索种子的方法相比减少了种子搜索的时间,并且实现简单有效.实验结果表明改进的区域增长算法应用于RoboCup中型组足球机器人的全景彩色图像分割具有良好的时效性. 相似文献
10.
Texture analysis of remote sensing images based on classification of area units represented in image segments is usually more accurate than operating on an individual pixel basis. In this paper we suggest a two-step procedure to segment texture patterns in remotely sensed data. An image is first classified based on texture analysis using a multi-parameter and multi-scale technique. The intermediate results are then treated as initial segments for subsequent segmentation based on the Gaussian Markov random field (GMRF) model. The segmentation procedure seeks to merge pairs of segments with the minimum variance difference. Experiments using real data prove that the two-step procedure improves both computational efficiency and accuracy of texture classification. 相似文献
11.
12.
Computational Visual Media - We consider semantic image segmentation. Our method is inspired by Bayesian deep learning which improves image segmentation accuracy by modeling the uncertainty of the... 相似文献
13.
Multimedia Tools and Applications - In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This... 相似文献
14.
15.
In this paper, a color image segmentation approach based on homogram thresholding and region merging is presented. The homogram considers both the occurrence of the gray levels and the neighboring homogeneity value among pixels. Therefore, it employs both the local and global information. Fuzzy entropy is utilized as a tool to perform homogram analysis for finding all major homogeneous regions at the first stage. Then region merging process is carried out based on color similarity among these regions to avoid oversegmentation. The proposed homogram-based approach (HOB) is compared with the histogram-based approach (HIB). The experimental results demonstrate that the HOB can find homogeneous regions more effectively than HIB does, and can solve the problem of discriminating shading in color images to some extent. 相似文献
16.
为提高彩色图像的分割效果,提出了一种最大灰度熵图像分量和脉冲耦合神经网络(PCNN)相结合的彩色图像分割方法.将彩色图像转换到符合人眼视觉特征的色调饱和度亮度(HSV)颜色空间中,选取灰度熵值最大的分量图像,用PCNN增强以增大感兴趣区域对比度,对增强后的分量图像运用PCNN进行循环分割,当二维Renyi熵值不再大于前一次的值时,终止PCNN的循环分割,获得最佳分割结果.运用多种评价指标对所分割的结果进行评价,评价结果表明:提出的算法能够有效实现对彩色图像的分割,尤其在图像细节方面,比传统的彩色图像分割方法表述得更为清晰. 相似文献
17.
A novel color image segmentation method using tensor voting based color clustering is proposed. By using tensor voting, the number of dominant colors in a color image can be estimated efficiently. Furthermore, the centroids and structures of the color clusters in the color feature space can be extracted. In this method, the color feature vectors are first encoded by second order, symmetric, non-negative definite tensors. These tensors then communicate with each other by a voting process. The resulting tensors are used to determine the number of clusters, locations of the centroids, and structures of the clusters used for performing color clustering. Our method is based on tensor voting, a non-iterative method, and requires only the voting range as its input parameter. The experimental results show that the proposed method can estimate the dominant colors and generate good segmented images in which those regions having the same color are not split up into small parts and the objects are separated well. Therefore, the proposed method is suitable for many applications, such as dominant colors estimation and multi-color text image segmentation. 相似文献
18.
Guo Dong Ming Xie 《Neural Networks, IEEE Transactions on》2005,16(4):925-936
An image segmentation system is proposed for the segmentation of color image based on neural networks. In order to measure the color difference properly, image colors are represented in a modified L/sup */u/sup */v/sup */ color space. The segmentation system comprises unsupervised segmentation and supervised segmentation. The unsupervised segmentation is achieved by a two-level approach, i.e., color reduction and color clustering. In color reduction, image colors are projected into a small set of prototypes using self-organizing map (SOM) learning. In color clustering, simulated annealing (SA) seeks the optimal clusters from SOM prototypes. This two-level approach takes the advantages of SOM and SA, which can achieve the near-optimal segmentation with a low computational cost. The supervised segmentation involves color learning and pixel classification. In color learning, color prototype is defined to represent a spherical region in color space. A procedure of hierarchical prototype learning (HPL) is used to generate the different sizes of color prototypes from the sample of object colors. These color prototypes provide a good estimate for object colors. The image pixels are classified by the matching of color prototypes. The experimental results show that the system has the desired ability for the segmentation of color image in a variety of vision tasks. 相似文献
19.
Wenbing Tao Hai Jin Yimin Zhang 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2007,37(5):1382-1389
In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images. 相似文献