首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CVD–SiC coated C/SiC composites (C/SiC) were joined by spark plasma sintering (SPS) by direct bonding with and without the aid of joining materials. A calcia-alumina based glass–ceramic (CA), a SiC + 5 wt% B4C mixture and pure Ti foils were used as joining materials in the non-direct bonding processes. Morphological and compositional analyses were performed on each joined sample. The shear strength of joined C/SiC was measured by a single lap test and found comparable to that of C/SiC.  相似文献   

2.
Flash joining of CVD-SiC coated Cf/SiC samples with a Ti interlayer was achieved using a Spark Plasma Sintering machine. The influence of different heating powers and discharge times were investigated. The sample flash joined at a maximum heating power of 2.2 kW (peak electric current of 370 A) within 7 s showed the highest apparent shear strength of 31.4 MPa, which corresponds to the interlaminar shear strength of the composites. A maximum joining temperature of ∼1237 °C was reached during the flash joining. An extremely rapid heating rate of 9600 °C/min combined with a very short processing time hindered any reaction between the CVD-SiC coating and the Ti interlayer. The formation of a metallic joint (Ti based) in the absence of any detectable reaction phase is proposed as a new joining mechanism. For a conventionally joined SPS sample, the formation of titanium silicide phases inhibited the formation of a bond.  相似文献   

3.
The ZrB2–20 vol.% SiC (ZS) composites were diffusion bonded to Nb using pure Ti interlayer. Effects of joining temperature on the microstructure and mechanical properties of the joints were investigated. The results show that Ti reacted with Nb and ZS to form a typical three layers in the joint. An in situ synthesized TiB whiskers array which consisted of two types of TiB was produced in the reaction layer. The formation mechanism of TiB was analyzed. Mutual diffusion between Ti and Nb led to a ductile β-(Ti, Nb) layer on Nb side. Joining temperature influenced the thickness of reaction layers and distribution of TiB seriously. The maximum shear strength reached 158 MPa with bonding temperature at 1200 °C for 60 min.  相似文献   

4.
In order to improve the bonding property of joint between SiC modified carbon/carbon (C/C) composites and Li2O–Al2O3–SiO2 (LAS) glass ceramics, SiC nanowires were attempted as the reinforcement materials in the interface region of SiC transition layer and Li2O–MgO–Al2O3–SiO2 (LMAS) gradient joining interlayer. The C/C–LAS joint with SiC nanowire-reinforced interface layer was prepared by a three-step technique of pack cementation, in situ reaction and hot-pressing. The microstructure and thermal shock resistance of the as-prepared joints were examined. The average shear strength of the joined samples with SiC nanowires increased from 24.9 MPa to 31.6 MPa after 40 thermal cycles between 1000 °C and room temperature, while that of the joined samples without SiC nanowires dropped from 21.4 MPa to 8.3 MPa. The increase of thermal shock resistance of the C/C–LAS joints was mainly attributed to the toughening mechanism of SiC nanowires by pullout, bridging and crack deflection.  相似文献   

5.
Spark plasma sintering (SPS) was employed to join monolithic β-SiC with or without titanium as intermediate joining material. Both the localized and rapid heating contributed to the inherent energy saving of electric current assisted joining technique. The effects of uniaxial pressure and surface preparation were analyzed independently with respect to the flexural strength and the morphology of the joints. In particular samples polished down to 1 μm and joined at 1900 °C for 5 min achieved the strength of the as received material. The failure occurred outside the joining interface, confirming the optimum quality of the joint. Pressure in combination with surface preparation was necessary to achieve perfect adhesion and pore free direct joining of SiC. The use of Ti foil as a joining material and pressure allowed joining of unpolished SiC.  相似文献   

6.
《Ceramics International》2015,41(6):7283-7288
A novel liquid preceramic polymer (V-PMS) was synthsized by modifying polymethylsilane (PMS) with 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane ([CH3(CH2CH)SiO]4, D4Vi), for joining SiC ceramics under ambient pressure. The obtained V-PMS with a viscosity of 125 Pas at room temperature exhibits excellent thermal properties and bonding strength. The ceramic yield of V-PMS treated at 1200 °C under Ar atmosphere is 84.5%, which is 38.3% higher than the original PMS. The shear strengths of the SiC joints joined by V-PMS at 800 °C, 1000 °C and 1200 °C under N2 atmosphere are 11.9 MPa, 34.5 MPa and 29.9 MPa, respectively. The excellent performances make the obtained V-PMS promising candidates for joining SiC ceramics in high-temperature applications.  相似文献   

7.
Two kinds of high-temperature organic adhesives were prepared and successfully applied to join SiC ceramic. One adhesive was composed of preceramic polymer (V-PMS) and B4C powder (HTA-1), and the other was composed of V-PMS, B4C powder and low melting point glass powder (HTA-2). The properties of the obtained adhesives were investigated by TGA, XRD, bonding test and SEM analysis. The results show that the obtained adhesives exhibit outstanding heat-resistant property and excellent bonding strength. The bonding strength of HTA-1 treated at 200 °C, 400 °C, 600 °C were 26.8 MPa, 18.9 MPa, 7.3 MPa, respectively. When the temperature increased to 800 °C or even higher, the shear strengths of the joints were enhanced to over 50 MPa. Moreover, by adding glass powder as the second filler, it was found that the minimum shear strength of HTA-2 was enhanced to 16.4 MPa. The excellent performances of the obtained adhesives make them as promising candidates for joining SiC ceramics for high-temperature applications.  相似文献   

8.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

9.
《Ceramics International》2007,33(6):1033-1039
Silicon carbide particles have been introduced as reinforcements in a commercially available active metal braze filler alloy (Incusil ABA, Wesgo Metals) used for the joining of ceramic-to-metal. The effect of particle reinforcement of the braze filler on the flexural strength of ceramic to metal joints has been investigated at room temperature and at elevated temperatures. An average four point flexural strength of nearly 400 MPa is achieved at room temperature when using Incusil ABA + 30 vol.% SiC (sandwich foil system) compared to 330 MPa with Incusil ABA alone. At a test temperature of 250 °C relaxation of residual stresses in the joints results in an average flexural strength of approximately 520 MPa when using Incusil ABA + 10 vol.% SiC. These values compare with an average room temperature flexural strength of nearly 800 MPa for the ceramic composite. The reaction products of the braze alloy at the joint interface were identified by SEM.  相似文献   

10.
《Ceramics International》2016,42(13):14463-14468
The development of reliable joining technology is of great importance for the full use of SiC. Ti3SiC2, which is used as a filler material for SiC joining, can meet the demands of neutron environment applications and can alleviate residual stress during the joining process. In this work, SiC was joined using different powders (Ti3SiC2 and 3Ti/1.2Si/2C/0.2Al) as filler materials and spark plasma sintering (SPS). The influence of the joining temperature on the flexural strength of the SiC joints at room temperature and at high temperatures was investigated. Based on X-ray diffraction and scanning electron microscopy analyses, SiC joints with 3Ti/1.2Si/2C/0.2Al powder as the filler material possess high flexural strengths of 133 MPa and 119 MPa at room temperature and at 1200 °C, respectively. The superior flexural strength of the SiC joint at 1200 °C is attributed to the phase transformation of TiO2 from anatase to rutile.  相似文献   

11.
SiC/C tapes with different compositions and thicknesses were used to join pressureless sintered silicon carbide ceramics by reaction bonding method. The microstructure of the joints and the influences of joint thickness and residual silicon content in joint layer on the 4-point flexural strength of as joined SiC ceramics have been investigated. Specimens with high flexural strength can be achieved through the control of the composition and the thickness of the joint layer. The highest flexural strength of the joined specimens with the joint thickness of 13 μm can reach 346 ± 35 MPa and 439 ± 31 MPa at room temperature and 1250 °C, respectively. The microstructure development and the reaction bonding mechanism were also studied.  相似文献   

12.
In the current investigation, pressureless melt infiltration was applied to fabricate the Al/SiC composites based on the SiC porous preforms. The process was conducted by introducing the aluminum melt into the SiC preforms at 950 °C under the nitrogen atmosphere, without the aid of pressure. To explore development of melt infiltration, initial preforms were produced with variable SiC fractions (40, 50, and 60 vol.%) using three different SiC powders with the mean particle size of 20, 50, and 90 μm. While the infiltration of aluminum melt into the preforms with 40 vol.% initial SiC volume fraction (SiC particle size of 90 μm) resulted to the composites with final density of 0.94 theoretical density (TD), this value drops down to ~0.9 TD for the composites produced by preforms with the SiC (90 μm) volume fraction of 60 vol.%. On the other hand, composites fabricated by 50 μm SiC powder (SiC volume fraction of 40 vol.%) demonstrated the final density of ~0.91 TD. The impact resistance tests performed on the composites demonstrated an enhancement in the value of impact energy with an increase of SiC powder particle size. Results, additionally, revealed a significant superiority of impact energy for the composites fabricated by a combined melt infiltration and sintering (MIS) procedure compared to those produced by infiltration at 950 and 1350 °C.  相似文献   

13.
The Co22.5Si77.5 (at.%) braze was used to bond porous Si3N4 ceramics. The effects of brazing temperature on microstructure and the bonding strength of the joint were studied. The results reveal that no visible reaction layer was observed. The corresponding joint strength was low. In order to improve the joint strength a carbon coated modification of the porous Si3N4 substrate was suggested. The impact of this modification on the joint properties was examined. It was established that a SiC reaction layer with a thickness from ∼15 μm to ∼65 μm was formed at the interface and SiC nanowires were observed when the temperature increased from 1280 °C to 1340 °C. The maximum shear strength of the carbon coated and uncoated joints were 115 MPa and 44 MPa, respectively. The significant improvement of the joint strength was attributed to the SiC reaction layer and a strengthening by the presence of SiC nanowires. .  相似文献   

14.
For this study, HfB2-based ultra high temperature ceramic (UHTC) samples were prepared by hot pressing and field-assisted sintering (FAS) with 10–20 vol.% SiC (baseline), 5 vol.% TaSi2, and 5 vol.% iridium. Dense billets were tested for hardness and mechanical strength. When compared, the FAS method consistently yielded materials with a grain size 1.5–2 times finer than samples processed via hot pressing. In general, room temperature flexural strengths of these materials were found to be lower (~400 MPa) than similar fully dense HfB2–SiC materials, with strengths between 500 and 700 MPa. Oxidation resistance testing of flat-face models was conducted in a simulated re-entry environment, at QCold Wall ~250 W/cm2 for 5 min. Samples processed by FAS had reduced oxide thickness and SiC depletion zones compared to the baseline HfB2–20SiC material. In all cases oxide thickness was reduced by ~3× and SiC depletion zone thickness was reduced ~3× over the baseline.  相似文献   

15.
A robust solid state diffusion joining technique for SiC ceramics was designed with a thickness-controlled Ti interlayer formed by physical vapor deposition and joined by electric field-assisted sintering technology. The interface reaction and phase revolution process were investigated in terms of the equilibrium phase diagram and the concentration-dependent potential diagram of the Ti-Si-C ternary system. Interestingly, under the same joining conditions (fixed temperature and annealing duration), the thickness of the Ti interlayer determined the concentration and distribution of the Si and C reactants in the resulting joint layer, and the respective diffusion distance of Si and C into the Ti interlayer differentiated dramatically during the short joining process (only 5 min). In the case of a 100 nm Ti coating as an interlayer, the C concentration in the joint layer was saturated quickly, which benefited the formation of a TiC phase and subsequent Ti3SiC2 phase. The SiC ceramics were successfully joined at a low temperature of 1000 °C with a flexural strength of 168.2 MPa, which satisfies applications in corrosive environments. When the Ti thickness was increased to 1 μm, Si atoms diffused easily through the diluted Ti-C alloy (a dense TiC phase was not formed), and the Ti5Si3 brittle phase formed preferentially. These findings highlight the importance of the diffusion kinetics of the reactants on the final composition in the solid state reaction, particularly in the joining technique for covalent SiC ceramics.  相似文献   

16.
《Ceramics International》2016,42(14):15811-15817
In this paper, a novel surface modification method for Cf/SiC composites is proposed. Si/SiC coating on Cf/SiC composites is prepared by tape casting and reaction bonding method. The effects of carbon content on the rheological property of the slurries along with the microstructure of the sintered coatings are investigated. The best result has been obtained by infiltrating liquid silicon into a porous green tape with a carbon density of 0.84 g/cm3. In addition, the effect of sintering parameters on the phase composition of the coatings is studied. Dense Si/SiC coating with high density as well as strong bonding onto the substrate is obtained. This Si/SiC coating exhibits an excellent mechanical property with HV hardness of 16.29±0.53 GPa and fracture toughness of 3.01±0.32 MPa m1/2. Fine surface with roughness (RMS) as low as 2.164 nm is achieved after precision grinding and polishing. This study inspires a novel and effective surface modification method for Cf/SiC composites.  相似文献   

17.
A new Cu–Au–Pd–V filler alloy was designed for the joining of Cf/SiC composite. Its wettability on the composite was studied with the sessile drop method. After heating at 1473 K for 10 min the filler alloy showed a low contact angle of 5°. The interfacial reactions under the brazing condition of 1443 K/10 min resulted in the formation of VC0.75 reaction band at the surface of the composite, and the microstructure in the central part of the joint is composed of Cu(Au, Pd) solid solution and Pd2Si compound. The average three-point bend strength of the Cf/SiC–Cf/SiC joints at room temperature is 135 MPa. The joints also exhibit stable strengths at high temperatures of 873–1073 K. The presence of refractory Pd2Si compound within the Cu(Au, Pd) solid solution matrix throughout the joint should contribute to the stable high-temperature property.  相似文献   

18.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

19.
A reaction bonding technique was used for the preparation of cordierite-bonded porous SiC ceramics in air from α-SiC, α-Al2O3 and MgO, using graphite as the pore-forming agent. Graphite was burned out to produce pores and the surface of SiC was oxidized to SiO2 at high temperature. With further increasing the temperature, SiO2 reacted with α-Al2O3 and MgO to form cordierite. SiC particles were bonded by the cordierite and oxidation-derived SiO2. The reaction bonding characteristics, phase composition, open porosity, pore size distribution and mechanical strength as well as microstructure of porous SiC ceramics were investigated. The pore size and porosity were strongly dependent, respectively, on graphite particle size and volume fraction. The porous SiC ceramics sintered at 1350 °C for 2 h exhibited excellent combination properties, the flexural strength of 26.0 MPa was achieved at an open porosity of 44.51%.  相似文献   

20.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号