首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various types of pore formers have been used for the fabrication of ceramics with controlled porosity. This study addresses a detailed and systematic comparison of different pore formers (e.g. graphite, polymethyl methacrylate, sucrose and polystyrene) with distinct features such as size, distribution and morphology of particles and decomposition/oxidation behavior. Investigations also involve their effect on the rheological properties of the slurries and the microstructural development of laminated porous ceramic tapes.Morphological features of the pore former particles were characterized using laser diffraction, B.E.T. surface area measurement and scanning electron microscopy (SEM) techniques as their thermal decomposition/oxidation behavior were determined by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) methods. Tape compositions were developed and optimized in order to incorporate identical volumetric loadings of the materials in the tape formulations with different pore formers for a reliable comparison of their pore forming characteristics. Porous yttria stabilized zirconia (YSZ) ceramics were fabricated without macroscopic defects (e.g. cracks, warpage and delamination) by developing heating profiles based on the identified thermal properties of the pore formers. Characterization of the sintered porous ceramics by SEM and mercury intrusion porosimetry techniques revealed novel relationships between the physical properties of the utilized pore formers, processing parameters and final pore structures.  相似文献   

2.
《Ceramics International》2016,42(11):12556-12572
The development of high-density ceramic materials with fine-grained microstructures has been studied to considerably improve their properties for high-performance applications. Many alternatives have been searched to refine their microstructure by changing their composition and/or processing. Among such alternatives, the densification of ceramic materials by sintering curve control is an effective, simple and economical microstructure refinement method. Thus, different thermal treatment techniques such as spark plasma sintering and microstructural forms of control such as the control of sintering conditions have been used to obtain nanostructured materials. One of the techniques widely used in recent years is two-step sintering. Two-step sintering (TSS) is a promising method used to obtain high-density bodies and smaller grain sizes. Two TSS methodologies are known: sintering with thermal pretreatment at a low sintering temperature, followed by a second stage at elevated temperature, and the more recent approach presented by Chen and Wang, which has been the most widely used. In addition to the sintering conditions (temperature, heating rate and sintering holding times) that must be suitable for each composition type, the starting materials, particle size and processing method may influence the obtained microstructure, especially the reduced grain size and increased densification. The current review of two-step sintering presents the effect of this technique on the grain density and sizes of different ceramic materials. The influence of the addition of doping agents and its effect on the mechanical properties in different systems is also presented in the current study.  相似文献   

3.
The gas permeability of Y0.03Zr0.97O2 (3Y-TZP) porous supports from thermoplastic feedstocks has been improved by adding MgO as a non-pyrolyzable pore former. Common pyrolyzable pore formers such as graphite often produce tortuous and narrow pore channels with low gas permeability, limiting the performance of oxygen transport membranes or other membranes relying on gas transport to the active membrane surface. Thermoplastic feedstocks for extrusion of tubular 3Y-TZP supports were prepared with four different amounts of pyrolyzable pore formers and/or MgO as non-pyrolyzable pore former. The MgO was removed after sintering by leaching in acetic acid. With this technique we obtained porosities above 70 vol% and gas permeabilities above 3?10?14?m2. Compared to samples with only pyrolyzable pore formers, the non-pyrolyzable pore former increases the gas permeability and reduces the tortuosity.  相似文献   

4.
Tape casting is a well-established technique to fabricate ceramic tapes. This technique has been usually applied to produce dense substrates for electronic applications, but recently there are increasing efforts regarding the production of porous cast tapes. The aim of this paper is to present the latest strategies and achievements to manufacture porous ceramic materials by tape casting. The pores morphology can be manipulated by adjusting particle size, sacrificial pore formers, sintering conditions, and combined techniques (phase inversion and freeze casting). Moreover, tape casting enables adjusting the thickness of the product, which is a key property in separation applications using membranes and/or support materials with tailorable structure.  相似文献   

5.
《应用陶瓷进展》2013,112(5):315-319
Abstract

Low friction silicon carbide (SiC) ceramic seals were prepared by combining liquid phase sintering (LPS) with pore creation, the effects of polyethylene oxide (PEO) as pore former on the sintering and mechanical properties, microstructure, and friction properties of LPS–SiC ceramic seals were investigated. The PEO firstly forms cross-linking aggregates with loose structure in SiC granules, which uniformly creates macropores on the surface and inside of LPS–SiC ceramic seals during the sintering. The addition of PEO decreases the sintering and mechanical properties of LPS–SiC ceramic seals obviously, while significantly reduces the dry friction coefficient of LPS–SiC ceramic seals. When the PEO content increases from 0 to 15 wt-%, the dry friction coefficient drops from 0·403 to 0·126. The pore creation of PEO improves the friction performances of SiC ceramic seals in sliding wear applications.  相似文献   

6.
刘亚会  汪建根 《精细化工》2012,29(3):222-226
采用氧化铝为主要原料制备出多孔陶瓷分离膜支撑体,对原料粉体做了TG/DSC曲线分析,研究了支撑体的烧结温度对收缩率的影响及烧结温度、保温时间和原料粉体粒径对孔结构、孔径的影响,造孔剂用量对孔隙率的影响。结果表明:在烧结温度为1200℃,保温时间4h,控制造孔剂用量大于20%时,制备出孔径分布均匀,孔隙率大于50%,符合透水要求的多孔陶瓷分离膜支撑体。  相似文献   

7.
以碳化硅(SiC)微粉为骨料,Al2O3-Y2O3为烧结助剂,氯化钙(CaCl2)作为造孔剂,采用无压液相烧结制备了表面微孔SiC陶瓷,分析了不同CaCl2含量对SiC陶瓷的烧结性能、显微结构和摩擦性能的影响。结果表明:加CaCl2会降低SiC陶瓷的体积密度、硬度和抗弯强度;可以有效地细化SiC陶瓷晶粒;能在SiC陶瓷...  相似文献   

8.
《Ceramics International》2019,45(12):14555-14561
Processing metallic powders by electrical resistance sintering requires the use of insulating ceramics dies. Selecting the appropriate ceramic material according to the electrical, thermal and mechanical properties is a need. Dies produced with several ceramic materials have been tested during the production of cemented carbide in order to check their behaviour in the process and final product properties. Tialite/mullite, zircon/mullite, zirconium phosphate based ceramic, yttria-stabilized zirconia and sialon, in most cases with modified compositions and shaping processes in order to achieve a high density, have been tested. Dry powder processing by cold isostatic pressing and furnace sintering resulted to be the better process for dies production. The effect of die properties on the produced cemented carbide, and the behaviour and life of the die during the production have been analysed. Very smooth die surface increases the number of cycles withstood during metallic parts production, because of lower extraction stresses, as checked for sialon dies. Zirconium phosphate based dies, with low thermal conductivity, show the most densified hard metal parts surface.  相似文献   

9.
《应用陶瓷进展》2013,112(7):377-383
New ceramic foams have been successfully synthesised with coal gangue and waste quartz sand, which supply a feasible way to recycle these hazardous solid wastes. An objective of this research was to investigate the sintering behaviour and effects of sintering conditions on the crystalline phase change, microstructure and main properties of final ceramic foams. Good correlations among porosity, thermal conductivity, water absorption, bulk density, mechanical properties were studied. Results indicated that increasing sintering temperature or time had similar effects on the physical–mechanical properties. Samples sintering at 1140°C for 1 hour exhibited the highest porosity (87.5%), lowest bulk density (0.39?×?10?3?kg?m?3), lowest thermal conductivity (0.085?W·(m?K)?1), moderate water absorption (9.38%) and adequate flexible strength (2.4?MPa). Combined with excellent properties and low-cost characteristics, the new development for ceramic foams preparation will be widely used in building insulation materials for no-load bearing walls.  相似文献   

10.
陶瓷材料的微波连续化烧结系统研究   总被引:4,自引:0,他引:4  
陶瓷材料烧结通常需要整体在窑炉内烧结,以保证材料性能.本文利用微波烧结的特性,研究了混合场的模型,设计了微波连续化烧结系统,并在该系统上成功地实现了Φ40×2400mm的陶瓷辊棒的微波连续化烧结.结果表明,微波烧结陶瓷辊棒的抗热震性能及抗弯强度均有较大幅度提高.本研究对微波烧结的实用化具有较大的推动作用.  相似文献   

11.
《应用陶瓷进展》2013,112(7):409-417
ABSTRACT

The silicon carbide (SiC) ceramics containing multilayer graphene derived from graphite exfoliation were successfully prepared by pressureless sintering, and the effect of graphene content on the sintering behaviours, microstructure, mechanical, tribological, electrical and thermal properties was investigated in detail. The bulk density, bending strength and hardness of the composite ceramics gradually decrease with the increase of graphene content, but the friction, conductance and thermal conductance properties are improved obviously. When the graphene content reaches 5?wt-%, the dry friction coefficient of 0.22, electrical conductivity of 2724.14 S?1?m?1 and thermal conductivity of 8.5?W?(m?1?K?1) can be obtained, indicating good comprehensive mechanical, tribological, electrical and thermal properties. This multilayer graphene reinforced silicon carbide ceramic is a promising seal material instead of SiC seal materials containing graphite to be applied in next-generation mechanical seals.  相似文献   

12.
《Ceramics International》2020,46(14):22774-22780
Ceramic alumina nanofibers were prepared by plasma-assisted calcination (PAC) using atmospheric pressure plasma. Electrospun polyvinyl pyrrolidone/aluminium butoxide fibers were pre-treated by plasma generated in ambient air using a special type of coplanar dielectric barrier discharge. The effect of plasma on fibers and structural, chemical and crystalline properties of obtained ceramic nanofibers were characterized using X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy, Energy-dispersive X-ray Spectroscopy and X-Ray Diffraction. Thermogravimetric and differential thermal analysis were used for the study of thermal behaviour of untreated and plasma-treated samples. The ceramic fibers prepared by PAC exhibit suitable chemical composition, higher porosity, high length of fibers and better crystalline properties with simultaneous simplifying of the sintering process. The plasma pre-treatment of fibers results in a shortening of following thermal treatment, decrease of the required temperature and excludes a slow temperature increase as prevention of fibrous structure degradation typical in preparation of ceramic fibers by polymer-template techniques.  相似文献   

13.
《Ceramics International》2020,46(2):1442-1447
Porous ceramic materials have been broadly applied in various fields due to their multifunctional properties. Optimization of their microstructural characteristics, such as pore morphology, total porosity, and pore size distribution, which determine various properties of the final products, is crucial to improve their performances and thus extend their applications. In this study, single-phase porous MgAl2O4 materials were fabricated by direct foaming–gelcasting. With an increase in the foam volume from 260 to 350 mL, the total porosity and pore size of the porous ceramic increased, and its microstructure varied from mostly closed cells to open cells containing interconnected large pores (40–155 μm) and small circular windows (10–40 μm) in the ceramic skeleton. The total porosity could be tailored from 84.91% to 76.08% by modulating the sintering temperature and foam volume and the corresponding compressive strengths were in the range of 2.8–15.0 MPa. The compressive strength exhibited a power-law relationship with the relative density with indices of approximately 3.409 and 3.439, respectively. Porous MgAl2O4 ceramics exhibited low dielectric constants in the range of 1.618–1.910 at room temperature, which are well matched with theoretical calculations on account of a modified Bruggeman model. The porous MgAl2O4 ceramics with good mechanical and dielectric properties controlled easily by various sintering temperatures and foam volumes are promising for practical applications.  相似文献   

14.
A novel kind of pore self-forming macro-/mesoporous gehlenite (2CaO·Al2O3·SiO2) ceramic (abbreviated C2AS) having a highest porosity of 80% corresponding to a volume expansion of 134% during sintering has been developed. The pore self-forming ability, microstructure, mechanical, and thermal physical properties of the porous ceramic are related to the sintering temperature. The gehlenite ceramic shows a very good pore self-forming ability over a very wide range of temperature from 900° to 1450°C. No vesicant is required and no hydrothermal treatment is needed, as is generally the case for other kinds of porous ceramics or glasses. The pore self-forming ability of the C2AS porous ceramic can be attributed to the escape of the adsorbed water vapor during the sintering process, due to automatic hydration of the fine, amorphous, flakey-shaped starting C2AS powder particles synthesized by the organic steric entrapment (PVA) method, as well as to their fine, porous microstructure. The pores of the ceramics can be either open or closed, and the average pore size ranges from 0.6 to 1.1 μm, corresponding to a porosity of 75%–80%, respectively. The porous ceramic can preserve nanometer-sized (26–50 nm) crystallites up to 1000°C. Sintered or thermally treated under different conditions, the porous ceramics exhibit relatively high flexural strengths ranging from 9.1 to 15.4 MPa, with a standard deviation of 0.3 and 4.2 MPa, respectively. Thermal properties of the porous ceramic up to 1000°C, including thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity, were investigated, and the stability of the porous ceramic in boiling water was also studied.  相似文献   

15.
研究了2,5-二甲基-2,5-二(叔丁基过氧基)己烷(俗称双二五)、2,4-二氯过氧化苯甲酰(俗称双二四)、过氧化二异丙苯(DCP)3种硫化剂对陶瓷化耐火硅橡胶力学性能和烧结性能的影响。结果表明,一次硫化和二次硫化后,使用DCP做硫化剂的硅橡胶的硬度都是最大,使用双二五做硫化剂的硅橡胶的拉断伸长率都是最高,采用双二四做硫化剂的硅橡胶拉伸强度都是最大;使用双二四做硫化剂的硅橡胶烧结硬度最高。综合来看,使用双二四作硫化剂时陶瓷化耐火硅橡胶的力学性能最好,其最佳用量为1.25份。  相似文献   

16.
《应用陶瓷进展》2013,112(4):229-235
Porous ceramic membranes are of special interest owing to their outstanding thermal and chemical stability. However, porous ceramic membranes with permeability usually suffer from low mechanical strength. Therefore, there have been a number of studies of the optimisation of membrane mechanical strength and permeability. In this paper, to avoid a trade-off between mechanical strength and permeability, we attempt to enhance these parameters by incorporating diatomite as both a pore former and a bonding phase. Because the flexural strength and air permeability of alumina support layers cannot be enhanced simultaneously by just changing the sintering temperature, we investigate whether they can be controlled by changing the amount of added diatomite. We study the effectiveness of diatomite as both a pore former and a bonding phase through a comparison of alumina–diatomite and the alumina–pyrophyllite composite support layers.  相似文献   

17.
以异丙醇铝为原料,采用溶胶凝胶法和浸渍提拉技术在玻璃载片上进行涂膜并考察了溶剂中乙醇含量对Al2O3膜结构及性能的影响。结果表明:在总溶剂含量为66.4 mL时,水与无水乙醇的体积比为7∶1,经过8 h回流后可得到稳定性良好的溶胶,溶胶的粘度为6.45 mPa.s;Al2O3薄膜的热稳定较好;所采用的烧结制度是0~100℃,升温速率为0.25℃/min,保温120 min;100~170℃,升温速率为0.5℃/min,保温120 min;170~400℃,升温速率为0.5℃/min,保温120 min;400~800℃,升温速率为1℃/min,保温120 min;最后自然冷却至室温即可得到性能良好的薄膜;膜表面光滑平整,薄膜平均孔径约为20.6449 nm。  相似文献   

18.
《Ceramics International》2017,43(11):8509-8516
Here we present a prospective method of sol-gel synthesis of highly porous wollastonite ceramic powders with controlled macroporous structure (mean pore size ~160 nm) and immobilized gold nanoparticles (particle size is less than 50 nm). The method's distinction is based on using the colloidal template (micelles of "core-shell" polymer latex) both as a poreforming agent and as nanoreactors for nanoparticle synthesis in the system wollastonite/Au-NPs. We revealed the impact of template thermal removal on the morphology of nanostructured wollastonite. We also optimized thermal treatment to obtain defect-free macroporous calcium silicates. Template functionalization by size stabilized gold nanoparticles with their following immobilization into the porous volume of synthesized wollastonite has been described. Besides, an original nonstandard method of combined sol-gel (template) synthesis and spark plasma sintering (SPS) is suggested to obtain the wollastonite ceramic compounds with bimodal pore size distribution (100–500 nm and not less than 1 µm), high mechanical strength (compressive strength limit ~120 MPa) and containing immobilized Au-NPs. Peculiarities of biporous silicate framework formation has been studied using two types of poreforming agents (templates) of various origin, shape and size, introduced during different stages of sol-gel and SPS processes. These templates are organoelemental polymer latex of “core-shell” type and nonorganic carbon filler. Developed approaches are innovative and provide to make new materials with unique characteristics and functional properties as bone-like structure, mechanical stability, antibacterial and anti-inflammatory effects and etc. The materials meet all the biomaterials requirements and are in high demand by modern medicine.  相似文献   

19.
Using granite scrap and red mud as raw materials, SiC as foaming agent, powder sintering method was used to prepare closed-pore foamed ceramic. The effects of the ratio of red mud and granite scrap, foaming agent content, sintering temperature and holding time on the crystalline phase, pore structure, and performance of foamed ceramic were systematically studied. The results showed that, when the content of red mud was 10 wt%, together with 1.0 wt% SiC addition, the heating rate was 5°C/min, the foamed ceramic sintered at 1130°C for 30 min exhibited optimal properties, including bulk density of 483.11 kg/m3, porosity of 77.27%, compressive strength of 1.62 MPa and water absorption of .49%. Based on these properties, it possessed broad potential application prospects in the fields of sound and thermal insulation, lightweight construction materials. In this study, the utilization ratio of industrial solid waste was 100%, realized the comprehensive utilization of granite scrap and red mud, and provided a new idea to realize their low-cost utilization by preparing foamed ceramic with associated economic and environmental benefits.  相似文献   

20.
研究了骨料粒径、添加剂种类、质量分数对陶瓷管性能的影响。采用自制装置分别测定了孔径分布、平均孔径、孔隙率和气体通量。用SEM观察其表面形貌。结果表明,使用较细的碳化硅颗粒,气体通量减小,抗弯强度增加;随着造孔剂质量分数的变化,多孔碳化硅陶瓷管的性能也有明显的不同,最佳添加量为10%左右。增加烧结结合剂的加入量,气体通量和抗弯强度均下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号