首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Commercial alumina powder was densified by spark plasma sintering (SPS) at 1150 °C. During SPS processing, the effects of the heating rate were examined on microstructure and transparency. With decreasing heating rate, the grain size and the residual porosity decreased, while the transparency increased. At a heating rate of 2 °C/min, the grain size was 0.29 μm, and the in-line transmission was 46% for a wavelength of 640 nm. The mechanisms for the fine microstructure and low porosity at slow heating, which are conflicting with some existing results, were explained by considering the role of defect concentration and grain-boundary diffusion during densification.  相似文献   

2.
An experimental screening design was used to evaluate the effects of spark plasma sintering (SPS) parameters such as heating rate, sintering temperature, dwell duration, and green-shaping processing on the relative density, grain size, and the optical properties of polycrystalline alumina (PCA). It is shown that heating rate and sintering temperature are the most critical factors for the densification of PCA during SPS. Green-shaping processing could prevent grain growth at low SPS sintering temperatures. No predominant SPS parameters are observed on the optical properties. Hence, the optical properties of PCA are controlled by microstructural evolution during the SPS process.  相似文献   

3.
The preparation of ultrafine-grained alumina ceramics by the fast sintering technique Self-propagating High-temperature Synthesis plus Quick Pressing (SHS-QP) method and spark plasma sintering (SPS) technique was reported. The effects of different heating rates (SHS-QP-1600 °C/min, SPS-200 °C/min) on the preparation of ultrafine structure were compared. The densification and grain growth as a function of sintering time and temperature were discussed. Within a short sintering time (<3 min), the full-dense alumina with ultrafine-grained structure was obtained by SHS-QP at 1550 °C under 100 MPa. By SPS, the sintering temperature was lower (1200 °C) than that of SHS-QP. The differences in densification parameters were explained by analyzing the thermodynamics of sintering process.  相似文献   

4.
Spark-plasma sintering (SPS) has the potential for rapid (with heating rates reaching several hundred K/min) and efficient consolidation of a broad spectrum of powder materials. Possible mechanisms of the enhancement of consolidation in SPS versus conventional techniques of powder processing are categorized with respect to their thermal and athermal nature. This paper analyzes the influence of thermal diffusion, which is an SPS consolidation enhancement factor of a thermal nature. The Ludwig–Soret effect of thermal diffusion causes concentration gradients in two-component systems subjected to a temperature gradient. The thermal diffusion-based constitutive mechanism of sintering results from the additional driving force instigated by spatial temperature gradients, which cause vacancy diffusion. This mechanism is a commonly omitted addition to the free-surface curvature-driven diffusion considered in conventional sintering theories. The interplay of three mechanisms of material transport during SPS is considered: surface tension- and external stress-driven grain-boundary diffusion, surface tension- and external stress-driven power-law creep, and temperature gradient-driven thermal diffusion. It is shown that the effect of thermal diffusion can be significant for ceramic powder systems. Besides SPS, the results obtained are applicable to the ample range of powder consolidation techniques, which involve high local temperature gradients.
The case study conducted on the alumina powder SPS demonstrates the correlation between the modeling and experimental data. It is noted that this study considers only one of many possible mechanisms of the consolidation enhancement during SPS. Further efforts on the modeling of field-assisted powder processing are necessary.  相似文献   

5.
An energy efficient spark plasma sintering method enabling the densification of large size samples assisted by very low electric current levels is developed. In this method, the electric current is concentrated in the graphite foils around the sample. High-energy dissipation is then achieved in this area enabling the heating and full densification of large (alumina) parts (Ø 40 mm) at relatively low currents (800 A). The electrothermal mechanical simulation reveals that the electric current needed to heat the large samples is 70% lower in the energy efficient configuration compared to the traditional configuration. The presence of thermal and densification gradients is also revealed for the larger size samples. Potential solutions for this problem are discussed. The experiments confirm the possibility of full densification (96%-99%) of large alumina samples. This approach allows using small (and low cost) SPS devices (generally limited to 10-15 mm samples) for large-size samples (40-50 mm). The developed technique enables also an optimized energy consumption by large-scale SPS systems.  相似文献   

6.
Spark plasma sintering (SPS) is a convenient and rapid means of producing dense ceramic compacts. However, the mechanisms responsible for rapid densification have not been identified satisfactorily, with different studies using an indirect approach yielding varied values for the densification parameters. This study involved SPS in high purity nanocrystalline alumina with temperatures ranging from 1173 to 1423 K and stresses from 25 to 100 MPa. A direct approach, with analyses at a constant density, revealed a stress exponent of ~1 and an inverse grain size dependence of ~3, consistent with Coble creep process. Whereas the direct approach gives a stress exponent of ~1, the indirect approach used previously gives stress exponents ranging from ~2.2 to 3.5 with the same data, thereby revealing potentially spurious values of the densification parameters from conventional indirect approaches to characterizing densification. The rapid densification during SPS is related to the finer grain sizes retained with the rapid heating rates and the imposed stress that enhances the driving force for densification.  相似文献   

7.
The microscopic densification mechanisms of metallic systems (TiAl, Ag-Zn) by spark plasma sintering (SPS) have been studied by simulations and experiments. Finite element simulations showed that, despite very high current densities at the necks between metallic powder particles (≈5 × 104 A/cm2), only very limited Joule overheating can be expected at these locations (<1°C), because of very fast heat diffusion. The microscopic plasticity mechanisms under these high electric currents have been studied by transmission electron microscopy. For this purpose, thin foils have been extracted by focused ion beam at the necks between TiAl powder particles. This is the first time, to the best of our knowledge, that microscopic plasticity mechanisms at the necks between powder particles are investigated by TEM during densification of a metallic powder. Dislocation glide and climb mechanisms were identified, followed by recovery and recrystallization. The elementary mechanism kinetically controlling these phenomena is proposed to be bulk diffusion of Al, which activation energy (360 kJ/mol) is close to the activation energy measured for densification (308 ± 20 kJ/mol). Comparisons of densification kinetics by SPS (≈60-110 A/cm2) and by hot pressing (0 A/cm2) showed no influence of current on these mechanisms. Finally, reaction experiments in the Ag-Zn system did not show any influence of very high currents (>1000 A/cm2) on diffusion kinetics. Consequently, densification by SPS occurs by classical mechanisms not affected by the current.  相似文献   

8.
《Ceramics International》2019,45(15):18222-18228
The properties of ceramics can be improved by controlling the microstructure through texturing ceramics in a strong magnetic field. Fabricating dense boron carbide (B4C) requires high temperature sintering, therefore sintering additives are often used in order to densify B4C ceramics at lower temperatures. However, combined effect of texturing and sintering additives on densification of B4C has not been made clear yet. Here we report the effect of alumina (Al2O3) sintering additive on texturing in a strong magnetic field and densification of B4C. Texturing was performed by rotating superconducting magnet at 12 T during slip casting process. Electron backscatter diffraction (EBSD) was used to observed the texturing projection. {0001} plane is clearly oriented in the plane parallel to rotating magnetic field. In addition, Lotgering factor was also calculated as quantitatively evaluation of texturing degree. Results on densification showed that addition of Al2O3 successfully increased density of B4C sintered by spark plasma sintering (SPS) at 1800oC to 97.8%. Formation of aluminum borate (Al5BO9) as secondary phase was detected by X-Ray diffraction (XRD). It is considered that the generation of Al5BO9 assisted finer densification of B4C ceramic. Textured B4C sintered at 1700oC by SPS without alumina addition exhibited the highest orientation of c-axis. Addition of alumina caused decrease in degree of orientation of c-axis.  相似文献   

9.
Despite the growing interest in the spark plasma sintering (SPS) of uranium dioxide, its sintering mechanisms have yet to be studied in great detail. Herein we propose a direct method to calculate the apparent activation energy for densification, Qact, and the stress exponent, n, for SPS of nearly stoichiometric UO2. A set of experiments performed at different heating rates (CHR) and different pressures levels allowed us to calculate Qact and n, respectively, though we were limited to a theoretical density between 50% to 75 %. The master sintering curve was employed as a complementary method to compare Qact. The average values were Qact =96 kJ/mol (CHR), Qact = 100 kJ/mol (MSC) and n = 1.4. We have therefore proposed grain boundary diffusion coupled with grain boundary sliding as the densification mechanism. The activation energy in SPS tends to be lower compared with that in other processes like conventional sintering (250?450 kJ/mol), creep (350?550 kJ/mol) and hot pressing (222 kJ/mol and 480 kJ/mol).This decrease could be due to the effect of the electric field combined with the higher heating rates, typical of SPS.  相似文献   

10.
Spark Plasma Sintering of Alumina   总被引:7,自引:1,他引:7  
A systematic study of various spark plasma sintering (SPS) parameters, namely temperature, holding time, heating rate, pressure, and pulse sequence, was conducted to investigate their effect on the densification, grain-growth kinetics, hardness, and fracture toughness of a commercially available submicrometer-sized Al2O3 powder. The obtained experimental data clearly show that the SPS process enhances both densification and grain growth. Thus, Al2O3 could be fully densified at a much lower temperature (1150°C), within a much shorter time (minutes), than in more conventional sintering processes. It is suggested that the densification is enhanced in the initial part of the sintering cycle by a local spark-discharge process in the vicinity of contacting particles, and that both grain-boundary diffusion and grain-boundary migration are enhanced by the electrical field originating from the pulsed direct current used for heating the sample. Both the diffusion and the migration that promote the grain growth were found to be strongly dependent on temperature, implying that it is possible to retain the original fine-grained structure in fully densified bodies by avoiding a too high sintering temperature. Hardness values in the range 21–22 GPa and fracture toughness values of 3.5 ± 0.5 MPa·m1/2 were found for the compacts containing submicrometer-sized Al2O3 grains.  相似文献   

11.
The high sintering temperature of pure B4C considerably limits its widespread application, thus searching an effective sintering aid is critical. In this work, B4C-based ceramic with 1 vol.% nonequiatomic Fe50Mn30Co10Cr10 medium entropy alloy as a sintering aid were fabricated at 1900-2000°C by spark plasma sintering (SPS) under applied pressure, and their mechanical properties were examined and compared with pure B4C ceramic sintered at same condition. The maximal flexural strength of 255.59 MPa, microhardness of 2297.6 Hv0.2 and fracture toughness of 3.62 MPa m1/2 could be obtained at optimized SPS pressure of 50 MPa, which were all higher than those of pure B4C ceramic. To better understand the densification kinetics mechanisms, the densification ratio as a function of SPS temperature and pressure was theoretically analyzed using steady creep model. It was found that densification controlled by grain-boundary sliding at lower pressure transferred to power law creep regime at higher pressure, which were proved by the dislocation net shown in transmission electron microscopy image.  相似文献   

12.
Nanocrystalline Y2O3 powders with 18 nm crystallite size were sintered using spark plasma sintering (SPS) at different conditions between 1100 and 1600 °C. Dense specimens were fabricated at 100 MPa and 1400 °C for 5 min duration. A maximum in density was observed at 1400 °C. The grain size continuously increased with the SPS temperature into the micrometer size range. The maximum in density arises from competition between densification and grain growth. Retarded densification above 1400 °C is associated with enhanced grain growth that resulted in residual pores within the grains. Analysis of the grain growth kinetics resulted in activation energy of 150 kJ mol?1 and associated diffusion coefficients higher by 103 than expected for Y3+ grain boundary diffusion. The enhanced diffusion may be explained by combined surface diffusion and particle coarsening during the heating up with grain boundary diffusion at the SPS temperature.  相似文献   

13.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   

14.
In this work, sintering kinetics window combined with microstructure development is adopted to understand the densification process of transparent alumina ceramic using submicrometre alumina powder. Alumina powder was densified via pressureless sintering and spark plasma sintering to explore the sintering behaviours of submicrometre alumina powder respectively. Sintering process could be divided into three typical stages, the criterion of which is based on whether the dominant mechanism is independent particle rearrangement or independent atomic diffusion. Through the investigation of sintering mechanisms of both sintering methods in the same way, it is found that it is necessary to remove the large pores (>100 nm) before grain growth is activated for complete densification. It suggests that at the temperature when the grain growth is activated, the corresponding pore structure proves to be the crucial factor influencing the complete densification of transparent alumina ceramic.  相似文献   

15.
Yttria stabilized zirconia (3 mol% YSZ) ceramics were prepared by Flash-SPS, while allowing high heating rates up to 200 °C/s, which led to the extremely fast densification within a few seconds. The high heating rates had strong impact on sintering mechanisms, in terms of densification and grain growth. While the specimens ended with 5–15 vol% porosity and limited grain growth (< 350 nm), their hardness is higher than fully dense counterpart SPSed ceramics. Using the sintering trajectories, microstructural observations, and impedance spectroscopy, we highlight altered sintering mechanism which resulted in very thin grain boundaries compared to SPS. It appears that densification is largely advanced at grain boundary interfaces, with no residual nano-pores at the grain junctions, where some pores with size comparable to grain size were present. This opens up opportunities for the fabrication of porous lightweight ceramics with good mechanical properties.  相似文献   

16.
The traditional models of sintering predict a pronounced dependence of densification rate on the scale of the microstructure as measured by the grain size. This study evaluates the grain size exponent for densification during isothermal sintering of an aggregated nanocrystalline zirconia powder, and for a submicrometer alumina powder. The results gave grain size exponents that are much higher than those anticipated for the expected sintering mechanisms. Furthermore, microstructural analysis showed that this overestimate of the exponent could be due to the spatial heterogeneity in the microstructure on the scale of the diffusion distance. To assess this issue, pore boundary tessellation was used to determine a new measurement of effective diffusion distance that takes into account the local spatial arrangement of pores. This measurement gives exponents much closer to those expected for the sintering of tetragonal zirconia by volume diffusion, and for the sintering of the alumina by grain-boundary diffusion.  相似文献   

17.
SPS (spark plasma sintering) process was used to sinter nanocrystalline ZrO2 (3Y). It was found to be different with the usual rapid sintering method, the density of the samples kept increasing with the rising of the sintering temperature. A higher density could be reached at a lower temperature and shorter dwelling time than that by hot-pressing under the similar pressures. In contrast to the samples with a differential densification from edge to center prepared by a rapid hot-pressing, no obvious densification gradient could be found in the samples sintered by SPS. The grain sizes of the Y-TZP obtained by SPS were smaller than those by the pressureless sintering method, while the grain growth speed was much higher under SPS conditions. All these unique sintering behaviors were explained by the special sintering process of SPS.  相似文献   

18.
The discolouration of magnesium aluminate spinel caused by carbon contamination is a main drawback of fabricating transparent bodies by spark plasma sintering (SPS). In this study, a two-stage heating rate profile was used to produce transparent MgAl2O4 without using sintering aids by SPS at 1250°C. The effect of critical temperature (Tc), at which the heating rate is decreased, on transparency and carbon contamination was investigated: higher critical temperature resulted in higher contamination. Non-uniform densification indicated that fast heating results in a hot-zone formation in the centre of sintered pellets; the higher temperature of centre favoured reaction of graphite die with spinel and formation of disordered carbon structures in residual pores.  相似文献   

19.
In this work, boron carbide ceramics were sintered in the temperature range of 1400–1600 °C by spark plasma sintering (SPS). The influence of sintering temperature, heating rate, and holding time on the microstructure, densification process and physical property was studied. The heating rate was found to have greater influence than that of the holding time on the microstructure and the densification of boron carbide. The optimal sintering temperature was 1600 °C under the heating rate higher than 100 °C/min. The relative density, flexural strength, Vickers hardness and fracture toughness of the sample synthesized at 1600 °C were 98.33%, 828 MPa, 31 GPa and 2.66±0.29 MPa m1/2, respectively. The densification mechanism was also investigated.  相似文献   

20.
The spark plasma sintering (SPS) process is a potentially effective in-situ resource utilization (ISRU) technology for consolidating lunar regolith in order to produce structural components for future space exploration. This study examined the fundamental mechanisms of the effects of SPS conditions on microstructure evolution, phase transformation, and mechanical properties. For this purpose, a lunar regolith simulant (FJS-1) was selected and sintered for a total of 16 cases based on four primary SPS testing parameters: temperature, applied external pressure, dwell time, and heating rate. The Taguchi design method was used to examine the effects and sensitivity of each testing parameter. Laboratory tests were conducted in multiple length scales, including density, porosity, optical microscopy, scanning electron microscopy aided by energy-dispersive spectroscopy, transmission electron microscopy, nanoindentation, and strength testing (in both compressive and flexural). Taguchi analysis results of SPS parameters and sintering mechanism discussion indicated that the sintering temperature is the dominant factor changing microstructure heterogeneity and densification during the SPS process. The contribution of applied pressure to the surface and the grain boundary diffusion rate and the nucleation rate indicated that the applied pressure may have enhanced both phase transformation and homogeneity during the sintering process. Strength of the sintered samples were approximately 10 times greater than those of a typical plain concrete. The collective results indicate that the SPS technology, a potentially viable ISRU method, can be used to produce property-specific and application-targeted building components on the lunar surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号