首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(18):16174-16177
Nickel oxide and Yttria-stabilized zirconia (NiO/YSZ) composite is one of the most promising mixed conducting electrode materials in both solid oxide electrolysis cell and solid oxide fuel cell applications. In this study, 50 wt% NiO and 50 wt% YSZ composite was synthesized via a modified glycine-nitrate combustion process (GNP) and the effect of sintering temperatures (1100 °C, 1300 °C and 1500 °C) on its microstructure and electrical properties were investigated. TG/DTA and in-situ high temperature XRD revealed the thermal property behavior and the structural changes of the as-combusted precursor material. For all the samples sintered at different temperatures, room temperature XRD patterns revealed a distinct cubic phases of both YSZ and NiO while SEM images showed a porous microstructure. The total conductivities at 700 °C are 9.87 × 10−3, 5.26 × 10−3, 4.02 × 10−3 S/cm for the 1100, 1300, and 1500 °C with activation energies of 0.1722, 0.3555, and 0.3768 eV, respectively. Conductivity measurements of the different sintered samples revealed that the total conductivities as well as the activation energies are greatly affected by different sintering temperatures.  相似文献   

2.
Silicon carbide (SiC) with ultra high porosity and unidirectionally oriented micrometer-sized cylindrical pores was prepared using a novel gelation–freezing (GF) method. Gelatin, water and silicon carbide powder were mixed and cooled at 7 °C. The obtained gels were frozen from ?10 to ?70 °C, dried using a vacuum freeze drier, degreased at 600 °C and then sintered at 1800 °C for 2 h. The gels could be easily formed into various shapes, such as cylinders, large pipes and honeycombs using molds. Scanning electron microscopy (SEM) observations of the sintered bodies showed a microstructure composed of ordered micrometer-sized cylindrical cells with unidirectional orientation. The cell size ranging from 34 to 147 μm could be modulated by changing the freezing temperatures. The numbers of cells for the samples frozen at ?10 and ?70 °C were 47 and 900 cells/mm2, respectively, as determined from cross-sections of the sintered bodies. The resulting porous SiC with a total porosity of 86%, exhibited air permeability from 2.3 × 10?11 to 1.0 × 10?10 m2, which was the same as the calculated ideal permeability, and high compressive strength of 16.6 MPa. The porosity, number of cells, air permeability and strength of the present porous SiC were significantly higher than that reported for other porous SiC ceramics.  相似文献   

3.
This paper reports the experimental findings on the tensile behavior of Strain-hardening cement-based composites (SHCC) subjected to elevated temperatures and different strain rates and to combinations of these parameters. Uniaxial tension tests with in-situ temperature control were performed at 22 °C, 60 °C, 100 °C and 150 °C. In addition, the effect of loading rate was investigated using the strain rates of 10? 5 s? 1, 3 × 10? 4 s? 1 and 10? 2 s? 1 at all four temperatures considered. It was shown that tensile strength decreases both with an increase in temperature and with a decrease in the strain rate. The strain capacity increases with decreasing strain rate at temperatures of 22 °C and 60 °C, but for the temperature of 100 °C this material property increases when the strain rate increases. At 150 °C the investigated SHCC loses its ductility and no noticeable strain rate effect can be observed. Furthermore, the residual properties of SHCC were evaluated using uniaxial tensile tests at room temperature on the specimens which were previously heated to 60 °C, 100 °C or 150 °C. The residual tests showed that the strength, strain capacity, and work-to-fracture decrease with increasing pre-treatment temperature. However, in comparison with the results of the in-situ tests with elevated in-situ temperatures, the residual tests on SHCC yielded higher tensile strength and lower ductility. These results and possible mechanisms leading to changes in mechanical performance are discussed on the basis of the observed crack patterns on the specimens' surfaces as well as the microscopic investigations of the condition of fibers on fracture surfaces.  相似文献   

4.
We have deposited unhydrogenated diamond-like carbon (DLC) films on Si substrate by pulsed laser deposition using KrF excimer laser, and investigated the effects of atomic-hydrogen exposure on the structure and chemical bonding of the DLC films by photoelectron spectroscopy (PES) using synchrotron radiation and Raman spectroscopy. The fraction of sp3 bonds at the film surface, as evaluated from C1s spectra, increased at a substrate temperature of 400 °C by atomic-hydrogen exposure, whereas the sp3 fraction decreased at 700 °C with increasing exposure time. It was found that the sp3 fraction was higher at the surfaces than the subsurfaces of the films exposed to atomic hydrogen at both the temperatures. The Raman spectrum of the film exposed to atomic hydrogen at 400 °C showed that the clustering of sp2 carbon atoms progressed inside the film near the surface even at such a low temperature as 400 °C.  相似文献   

5.
Diamond-like carbon (DLC) films were obtained by spinning a tungsten carbide substrate at a high speed using an oxyacetylene flame. The films deposited at a typical experimental condition of substrate temperature of 810°C, rotation of 600 rpm and 3 h deposition time, exhibited an uniform, very smooth, hard and glassy surface covering the entire exposed face of the substrate. These films were identified as DLC by their characteristic broad Raman spectra centered at 1554 cm−1 and micro-Vicker's hardness >3400 kg mm−2. For substrate temperatures <800°C the film started losing the uniform glassy surface and the hardness deteriorated. For temperatures >950°C the film was still hard and shiny, but black in color. DLC films were also obtained in a wide range of speeds of rotation (300–750 rpm), as long as the temperature remained close to 850°C.  相似文献   

6.
Sr2NaNb4O13 (SNNO) nanosheets were exfoliated from the K(Sr2Na)Nb4O13 compound that was synthesized at 1200 °C. The SNNO nanosheets were deposited on a Pt/Ti/SiO2/Si substrate at room temperature by the electrophoretic method. Annealing was conducted at various temperatures to remove organic defects in the SNNO film. A crystalline SNNO phase without organic defects was formed in the film annealed at 500 °C. However, a SrNb2O6 secondary phase was formed in the films annealed above 600 °C, probably due to the evaporation of Na2O. The SNNO thin film annealed at 500 °C showed a dielectric constant of 74 at 1.0 MHz with a dielectric loss of 2.2%. This film also exhibited a low leakage current density of 9.0 × 10−8 A/cm2 at 0.6 MV/cm with a high breakdown electric field of 0.72 MV/cm.  相似文献   

7.
BaSm2Ti4O12 (BST) film grown at room temperature was amorphous, while the film grown at 300 °C was also amorphous but contained a small amount of crystalline Sm2Ti2O7 (ST). The crystalline BST phase was formed when the film was grown at 700 °C and subjected to rapid thermal annealing (RTA) at 900 °C. On the other hand, the ST phase was formed in the film grown at 300 °C and subjected to RTA at 900 °C. A high capacitance density of 2.12 fF/μm2 and a low leakage current density of 1.15 fA/pF V were obtained from the 150 nm-thick BST film grown at 300 °C. Its capacitance density could conceivably be further increased by decreasing the thickness of the film. It had linear and quadratic coefficients of capacitance of −785 ppm/V and 5.8 ppm/V2 at 100 kHz, respectively. Its temperature coefficient of capacitance was also low, being approximately 255 ppm/°C at 100 kHz.  相似文献   

8.
Bamboo-like carbon nanotubes (CNTs) were synthesized on a copper foil by catalytic chemical vapor deposition (CVD) from ethanol. The effects of temperature (700–1000 °C) and duration (5–60 min) on the growth of CNTs were investigated. Morphology and structure of the CNTs were characterized by scanning and transmission electron microscopy and Raman spectroscopy. The yield and size of the CNTs increased with temperature. Those prepared at 700 °C had a copper droplet tip and those at 800–900 °C had a copper nanoparticle inside. An amorphous carbon film consisted of a porous and non-porous layer was observed on the surface of the copper substrate, and the CNTs were really grown from this carbon film. The thickness of the carbon film increased from 187 to 900 nm when the duration increased from 5 to 60 min. It was also found that the copper foil became porous after ethanol CVD treatment. The growth mechanism of the CNTs, carbon film and motion of copper catalyst were discussed. It is proposed that a carbon film first deposited on the top surface of the copper foil while the top surface of the copper foil partially melted and migrated across the carbon film, where CNTs formed.  相似文献   

9.
A porous alumina body was synthesized from anisotropic alumina particles, namely platelets. When green compacts, which had been uniaxially pressed at 1 MPa, were heated at 1200 and 1500 °C for 1 h, the average porosity of the resulting alumina bodies was 75.5 and 71.0%, respectively. The thermal conductivity of the porous alumina fabricated at 1400 °C for 1 h with 72.3% in porosity was 0.8 W m?1 K?1. In an attempt to increase the compressive strength of the porous alumina bodies, TEOS (tetraethyl orthosilicate) solution treatment was carried out, followed by reheating to 1400 °C for 1 h. The compressive strength of the porous alumina body increased from 3.8 MPa (without TEOS solution treatment) to 10.2 MPa (with three rounds of TEOS treatment), with the porosity decreasing to 65.5% and the thermal conductivity increasing to1.2 W m?1 K?1.  相似文献   

10.
Nanoperovskite oxides, Ba0.2Sr0.8Co0.8Fe0.2O3?δ (BSCF), were synthesized via the co-precipitation method using Ba, Sr, Co, and Fe nitrates as precursors. Next, half cells were fabricated by painting BSCF thin film on Sm0.2Ce0.8Ox (samarium doped ceria, SDC) electrolyte pellets. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) measurements were carried out on the BSCF powders and pellets obtained after sintering at 900 °C. Investigations revealed that single-phase perovskites with cubic structure was obtained in this study. The impedance spectra for BSCF/SDC/BSCF cells were measured to obtain the interfacial area specific resistances (ASR) at several operating temperatures. The lowest values of ASR were found to be 0.19 Ω cm2, 0.14 Ω cm2 0.10 cm2, 0.09 Ω cm2 and 0.07 Ω cm2 at operating temperatures of 600 °C, 650 °C, 700 °C, 750 °C and 800 °C, respectively. The highest conductivity was found for cells sintered at 900 °C with an electrical conductivity of 153 S cm?1 in air at operating temperature of 700 °C.  相似文献   

11.
Apatite-type lanthanum silicate based films have attracted significant interests to use as an electrolyte of solid oxide fuel cells (SOFCs) working at intermediate temperature. We have prepared Mg doped lanthanum silicate (MDLS) films on NiO–MDLS cermet substrates by spin coating and sintering of nano-sized printable paste made by beads milling. Changes in crystal structure and microstructure of the paste films with the sintering temperature have been investigated to show that porous network structure with a grain growth evolves up to 1300 °C, whereas densification occurred above 1400 °C. Anode supported SOFCs using the pasted MDLS films were successfully fabricated: an open circuit voltage of 0.91 V and a maximum power density of 150 mW cm−2 measured at 800 °C were obtained with the electrolyte film sintered at 1500 °C.  相似文献   

12.
Highly porous Si3N4 ceramics have been fabricated via freeze casting and sintering. The as-sintered samples were pre-oxidized at 1200–1400 °C for 15 min. The effect of pre-oxidation temperature on the microstructure, flexural strength, and dielectric properties of porous Si3N4 ceramics were investigated. As the pre-oxidation temperature increased from 1200 °C to 1400 °C, firstly, the flexural strength of the pre-oxidized specimens remained almost constant at 1200 °C, and then decreased to 14.2 MPa at 1300 °C, but finally increased to 25.6 MPa at 1400 °C, while the dielectric constant decreased gradually over the frequencies ranging from 8.2 GHz to 12.4 GHz. This simple process allows porous Si3N4 ceramics to have ultra-low dielectric constant and moderate strength, which will be feasible in broadband radome applications at high temperatures.  相似文献   

13.
We prepared a series of graphene-like materials by thermal exfoliation/reduction of a graphite oxide (GO) at temperatures between 127 °C and 2400 °C. The extent of the exfoliation and reduction of the GO at different temperatures, as well as the impact on the resultant graphene-like materials (TRGs), were studied through their chemical/structural characterization. The main oxygen loss was observed at 127 °C during the blasting of the GO, which produced its exfoliation into monolayer functionalized TRG with hydroxyl groups and minor amounts of epoxy and carboxyl groups. Above 600 °C, the reduction continued smoothly, with oxygen and hydrogen loss and the conversion of hybridised carbon atoms from sp3 into sp2. 1000 °C appears to be a critical temperature for the efficiency of the reduction process, as the resulting TRG contained <2% oxygen and 81.5% sp2-carbon atoms. The materials obtained at 2000 °C and 2400 °C were almost oxygen-free and the layers exhibited a dramatic restoration of the pristine graphite structure, as confirmed by the increase in the average size of the sp2-domains. The typical disordered stacking of TRGs increases with temperature, although they can be dispersed yielding monolayers at 127 and 300 °C and stacks of up to 4–6 layers above 1000 °C, as determined by AFM.  相似文献   

14.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

15.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

16.
《Ceramics International》2015,41(8):9686-9691
A novel solid state reaction was adopted to prepare Sm0.2Ce0.8O1.9 (SDC) powder. A mixed oxalate Sm0.2Ce0.8(C2O4)1.5·2H2O was synthesized by milling a mixture of cerium acetate hydrate, samarium acetate hydrate, and oxalic acid for 5 h at room temperature. An ultra-fine SDC powder with the primary particle size of 5.5 nm was obtained at 300 °C. The ultra-low temperature for the formation of SDC phase was due to the atomic level mixture of the Sm3+ and Ce4+ ions. The crystal sizes of SDC powders at 300 °C, 550 °C, 800 °C, and 1050 °C were 5.5 nm, 11.4 nm, 24.1 nm and 37.5 nm, respectively. The sintering curves showed that the powder calcined at lower temperature was easier to be sintered owning to its smaller particle size. A solid oxide electrolytic cell (SOEC), comprising porous La0.8Sr0.2Cu0.1Fe0.9O3−δ (LSCF) for substrate, LSCF–SDC for active electrode, SDC for electrolyte, and LSCF–SDC for symmetric electrode, was fabricated by dip-coating and co-sintering techniques. An extremely dense SDC film with the thickness of 20 μm was obtained at only 1200 °C, which was about 100–300 °C lower than the literatures׳ reports. The designed SOEC was proved to work effectively for decomposing NO (3500 ppm, balanced in N2), 80% NO can be decomposed at 600 °C.  相似文献   

17.
The sintering behavior of nanocrystalline orthorhombic mullite powders was investigated. The changes in microstructure, mechanical and dielectric properties with two different heating rates were explained. Microstructural characteristics depending on heating rate were explained at different sintering temperatures. Dielectric properties of prepared mullite nanocomposites were studied to examine the synthesized mullite ceramics as high permittivity materials in the microwave range. It was indicated that a sharp decrease in bulk density was observed at 1600 °C due to the exaggerated growth of mullite grains. Moreover, a maximum hardness value of 4.97 GPa was obtained at 1600 °C with slow heating rate (5 °min?1). The DC electrical resistivity with a slow heating rate at 1300 °C was approximately three times the value of the mullite sample sintered with a fast heating rate (30 °min?1). The minimum dielectric loss of about 0.017 at 1.5 GHz was achieved at a sintering temperature of 1500 °C with a slow heating rate.  相似文献   

18.
Amorphous and crystalline powder of PLT phase was synthesized by using the Pechini method. Infrared (FTIR) analysis of the polymeric resin shows intense bands of organic materials from 250 to 1620 cm−1. X-ray diffraction (XRD) and Raman spectra of calcined powder at different temperatures show amorphous phase at 450 °C/3 h, semi-crystalline phase at 550 °C/3 h and a crystalline phase at 800 °C/3 h. Luminescence effect was observed in amorphous powder calcined from 300 to 350 °/3 h with broad absorption peaks in 579 nm at 300 °C/3 h and 603 nm at 350 °C/3 h, respectively. The photoluminescence effect is attributed to emissions of Ti→O directly from the oxygen 2p orbital (valence band) to the titanate 3d orbital (conduction bands).  相似文献   

19.
A porous yttria-stabilized zirconia (YSZ) ceramic supported single cell with a configuration of porous YSZ support layer coated with Ni/Ni–Ce0.8Sm0.2O1.9 (SDC) anode/YSZ/SDC bi-layer electrolyte/La0.6Sr0.4Co0.2Fe0.8O3−δ cathode was fabricated. The porosity, mechanical strength, and microstructure of porous YSZ ceramics were investigated with respect to the amount of poly(methyl methacrylate) (PMMA) used as a pore former. Porous YSZ ceramics with 56 vol.% PMMA showed a mechanical strength of 24 ± 3 MPa and a porosity of 37 ± 1%. The electrochemical properties of the single cell employing the porous YSZ support layer were measured using hydrogen and methane fuels, respectively. The single cell exhibited maximum power densities of 421 mW/cm2 in hydrogen and 399 mW/cm2 in methane at 800 °C. Moreover, at a current density of 550 mA/cm2, the cell maintained 91% of its initial voltage after operation in methane for 13 h at 700 °C.  相似文献   

20.
The present work aimed, on one hand, to study of the drying of onions in terms of drying kinetics, which was evaluated at 30 °C, 50 °C and 60 °C. The experimental data was fitted to different empirical kinetic models from the literature, and this kinetic study was then complemented with the modelling if terms of Fick's diffusion equation, for estimation of the diffusion coefficients. On the other hand, the chemical characterization in fresh and dried onions at different temperatures (varying from 30 °C to 70 °C) was analysed, to evaluate the effect of drying and drying temperature on the chemical composition of the product. In this way, the analyses of moisture content, sugar content, crude protein, ash, fat, crude fibre, acidity and vitamin C were made and reported in this paper.From the results obtained it was verified that some chemical components of the onions are not affected by drying (ash, fat, protein and fibre) whereas some others are considerably influenced by drying (sugars, acidity and vitamin C). The present work allowed concluding that the three empirical models tested (Newton, Modified Page and Logarithmic) all describe relatively well the dehydration kinetics at the three temperatures analysed. Moreover, from the experimental data it was possible to estimate the diffusivities, which range between 3.33 × 10?09 m2/s at 30 °C and 8.55 × 10?09 m2/s at 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号