首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
一种基于本体的概念语义相似度计算研究   总被引:2,自引:2,他引:0  
概念的语义相似度研究,是知识表示以及信息检索领域中的一个重要内容.通过分析两种传统的语义相似度计算方法,对它们存在的问题进行改进,提出了一种综合的基于本体的概念语义相似度计算方法.该方法结合本体网络特征和语义距离计算中的多种语义影响因素,充分利用本体中概念的语义信息计算概念间的语义相似度.实验结果比较合理,验证了该方法的有效性.  相似文献   

2.
改进的本体语义相似度计算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
概念的语义相似度研究,是知识表示以及信息检索领域中的一个重要内容。通过分析两种传统的语义相似度计算方法,对它们存在的问题进行改进,提出了一种综合的基于本体的概念语义相似度计算方法。该方法结合本体的DAG网状结构特征和语义距离计算中的多种语义影响因素,充分利用本体中概念的语义来计算概念间的语义相似度。实验结果比较合理,验证了该方法的有效性。  相似文献   

3.
基于本体的语义相似度和相关度计算研究综述   总被引:2,自引:2,他引:0  
语义相似度和相关度计算广泛应用于自然语言处理中,已有大量语义相似度和相关度算法被提出。分析总结了树和图结构中影响概念相似度或相关度的因素,综述了基于本体的英文语义相似度和相关度计算方法,明确了语义相似度和相关度的区别与联系,系统地对算法进行了分类,最后对每类算法进行了详细的比较。  相似文献   

4.
基于上下文的概念语义相似度计算模型   总被引:2,自引:0,他引:2       下载免费PDF全文
吕林涛  董迎 《计算机工程》2010,36(21):59-61
针对概念语义相似度计算方法在信息检索中存在的漏检、误检等问题,提出一种基于上下文的计算本体内概念间语义相似度的模型。该模型分别从概念的父节点、子节点以及概念间路径权重3个角度进行计算,加权求和并求得语义相似度。实验结果表明,该模型的计算结果更加接近专家的经验值,为概念之间的语义关系提供了有效的量化。  相似文献   

5.
基于本体的概念相似度计算   总被引:11,自引:2,他引:9       下载免费PDF全文
概念相似度的计算是信息检索领域的研究热点。本体在信息检索和人工智能领域的广泛应用,为概念相似度计算带来新的方法。该文提出一种利用本体来计算概念间相似度的方法,综合考虑语义距离和本体库统计特征。加入概念的深度、语义重合度和概念间强度的辅助影响。实验结果表明,该方法对概念相似度的计算有效,可应用于面向Web的信息检索。  相似文献   

6.
提出了基于语义相似度和相关度的综合概念相似度计算方法.语义相似度考虑了语义距离和本体库特征,加入概念的信息量、概念的深度、概念的密度和不对称因子的辅助影响;语义相关度从直接相关、间接相关、直接继承和间接继承几个方面考虑.通过实验和两种传统的语义相似度计算方法进行对比,本方法能更好地区分本体树中不同关系的概念对,验证了该方法的有效性.  相似文献   

7.
基于本体和相似图的概念语义相似度计算   总被引:1,自引:1,他引:1  
概念语义相似度计算的研究是人工智能最基础和最重要的课题之一,借鉴现有的概念建模思想和工具,提出一种综合的计算形式概念分析中概念间语义相似度的算法.通过分析传统的计算方法,对存在的问题进行改进,结合领域本体和FCA的思想,通过相似图和候选属性对集合等定义计算FCA中概念间的语义相似度.应用实例的结果表明计算结果与人类的主观判断基本一致.文中的方法对概念间语义相似度计算是可行的,使用该方法可以获取在语义上和用户请求最接近的结果.  相似文献   

8.
基于加权的本体相似度计算方法   总被引:1,自引:0,他引:1  
为优化基于本体的语义推理效果,提出了对本体中概念结点赋予权重的相似度计算方法.通过定义本体树中深度因子和密度因子,以解决本体中概念深度与密度对相似度计算的影响.利用Jena API、Lucene等开源工具包,提出了查询扩展方法.实验结果表明,提出的基于加权语义相似度计算模型与传统的计算法方法以及主观判断的方法相比,提高了相似度计算的准确性,效率有明显提高.  相似文献   

9.
领域本体的概念相似度计算   总被引:11,自引:1,他引:11  
随着本体在信息检索、人工智能等领域的广泛应用,面向本体的概念相似度计算成为了本体研究的一大热点。当前领域本体中概念相似度的研究主要是利用概念的上下位关系进行计算,但这并没有完整反映出概念的语义信息。论文提出的算法将概念相似度计算分为两层,一层是概念语义初始相似度层,其主要利用概念之间的距离来计算概念的初始相似度。另一层是概念非上下位关系相似度层,其在概念初始相似度的基础上,计算概念通过非上下位关系体现出的相似度。最后通过综合计算,得到领域本体中概念的实际相似度。实验证明,该方法充分利用了本体中概念的语义信息,得到的结果也比较合理。  相似文献   

10.
改进的概念语义相似度计算   总被引:2,自引:0,他引:2  
在相似度计算中,本体能够将各种概念及相互关系明确地,形式化地表达,因而发挥着重要的作用.为了使相似度计算结果更为精确,考虑更全面的利用本体中的关系,和相似度计算在特定领域中应用的特点,提出一个改进的相似度计算模型.利用上下位关系计算相似度,非上下位关系计算相关度,将二者合成,并同时考虑语义检索领域中,相似度计算的不对称性.经过实验验证了该方法有效且精确.  相似文献   

11.
基于基因本体的语义相似度研究   总被引:3,自引:0,他引:3       下载免费PDF全文
魏韡  向阳  陈千 《计算机工程》2010,36(20):209-210
针对基因本体的有向无环图结构,提出一种新的计算基因本体中术语间语义相似度的方法。该方法通过计算2个术语的公共祖先及符合条件的不相交祖先,得到不相交祖先的信息量平均值和2个术语的信息量平均值,并将2个平均值的比值作为2个术语的语义相似度。实验结果证明该方法准确度较高。  相似文献   

12.
基于SUMO(Suggested Upper Merged Ontology)[1],提出一种计算两概念语义相似度的语义距离方法.根据该方法实现一个计算平台,将计算结果同人类的主观判断进行比较,验证概念语义相似度计算方法的有效性.研究成果拟在正在研发的语义数据库中本体集成部分得到应用,也可以为本体的其它相关研究提供一定的技术方法基础.  相似文献   

13.
基于本体结构的概念间语义相似度算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对本体模型的结构特点,从模型概念间的宽度、深度、密度等方面分析本体概念相似度的计算,将其合并为结构因素。结合语义重合度、语义距离等影响相似度的因素综合考虑,提出一种基于本体结构的计算概念间语义相似度的算法。通过建立本体模型并进行实验分析,总结出本体结构方面各因素对本题概念语义相似度的影响。  相似文献   

14.
基于本体概念相似度的语义Web服务匹配算法   总被引:14,自引:1,他引:14       下载免费PDF全文
通过定义本体中概念之间的语义距离来计算本体概念之间的相似度,提出一种基于该相似度的Web服务的精确匹配算法,新的算法与经典的OWL-S/UDDI匹配算法比较,不仅在等级上保持一致,而且使同一等级或不同等级之间的服务匹配都达到精确的程度。用GEIS系统中Web服务的数据进行两种算法的性能测试,得出相似度匹配算法的平均查准率是OWL-S/UDDI匹配算法的1.8倍,平均查准率是OWL-S/UDDI匹配算法的1.4倍。  相似文献   

15.
一种基于本体的概念相似度计算及其应用   总被引:2,自引:0,他引:2  
概念的语义相似度研究,是知识表示以及信息检索领域中的一个重要内容。本文提出了基于语义相似度和相关度的综合概念相似度计算方法,考虑了语义距离和本体库特征,加入概念的信息重合度、概念的深度、概念的密度和不对称因子的辅助影响。通过实验和两种传统的语义相似度计算方法进行对比,本方法能更好地区分本体树中不同关系的概念对,验证了该方法的有效性。  相似文献   

16.
基于本体的概念语义相似度度量   总被引:4,自引:2,他引:2       下载免费PDF全文
针对概念语义相似度度量问题,提出结合基于图理论和信息量2种方法的语义相似度度量算法。计算2个概念在概念图中连接的路径长度、局部密度以及在连接2个概念之间的路径上连接关系的连接力度,结合连结路径权重和信息量来度量概念之间的语义相似度。实验结果表明,该算法能取得较好的度量效果。  相似文献   

17.
为了实现制造资源本体之间的语义互操作,对本体中的概念进行语义相似性计算为进行此操作的关键技术之一。本文提出了一种计算概念语义相似度的新方法,将概念语义相似度分为两部分:主体相似度和附加相似度。主体相似度综合考虑了概念自身的相似度,该概念的父概念和子概念间的相似度,以及概念间的二元关系,同时,加入了概念属性相似度,属性携带了概念的大部分语义信息,计算属性相似度可以有效提高概念语义相似度的准确性。附加相似性是指通过本体中概念的层次结构对主体相似度进行语义补充,利用概念的深度对得到的概念语义相似度进行语义调整,有效的弥补了仅仅利用主体相似度计算概念语义相似度的不足。最后,通过实例证明了该方法的有效性。  相似文献   

18.
语义相似度计算的应用范围广泛,从心理学、语言学、认知科学到人工智能都有其应用.提出了仅依赖于知网(HowNet)的信息量计算来估计两个词汇间的语义相似度.经实验证明,相比于传统的基于词网(WordNet)和大型语料库的计算信息量来估计语义相似度的算法,本文的算法更容易计算,并更接近于人工的语义相似度判断.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号