首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Five types of magnetic nanofluids, based on \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles with water as the carrier liquid, were investigated by using the two photopyroelectric (PPE) detection configurations (back (BPPE) and front (FPPE)), together with the thermal-wave resonator cavity (TWRC) technique as the scanning procedure. The difference between the nanofluids was the type of surfactant: double layers of lauric (LA–LA), oleic (OA–OA), and miristic (MA–MA) acids and also double layers of lauric–miristic (LA–MA) and palmitic-oleic (PA–OA) fatty acids were used. In both detection configurations, the information was contained in the phase of the PPE signal. The thermal diffusivity of nanofluids was obtained in the BPPE configuration, from the scan of the phase of the signal as a function of the liquid’s thickness. Using the same scanning procedure in the FPPE configuration, the thermal effusivity was directly measured. The influence of a 0.12 kG magnetic field on the thermal effusivity and thermal diffusivity was also investigated. Because of different surfactants, the thermal effusivity of the investigated nanofluids ranges from \(1530\,\hbox {W}\cdot \hbox {s}^{1/2} \cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) to \(1790\,\hbox { W}\cdot \hbox {s}^{1/2}\cdot \hbox { m}^{-2}\cdot \hbox { K}^{-1}\) , and the thermal diffusivity, from \(14.54~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) to \(14.79~\times ~10^{-8}\,\hbox { m}^{2}\cdot \hbox { s}^{-1}\) . The magnetic field has practically no influence on the thermal effusivity, and produces a maximum increase of the thermal diffusivity (LA–LA surfactant) of about 4 %.  相似文献   

2.
The material behavior of dominant elastic–plastic \(\upgamma \) - \(\hbox {Al}_{2}\mathrm{O}_{3}\) granules has been experimentally studied by means of quasi static compression tests and dynamic impact tests until fracture. The obtained distributions of breakage velocity and specific breakage energy are compared. Thus, velocity dependent influences at stressing like viscous behavior can be derived. Additionally, the influences of particle size and moisture content on the material behavior are investigated.  相似文献   

3.
The structural and elastic properties of orthorhombic $\hbox {ZrO}_{2}\,(m\hbox {-ZrO}_{2})$ as a function of temperature are investigated by the generalized gradient approximation (GGA) correction scheme in the framework of density functional theory (DFT) and the quasi-harmonic Debye model. The thirteen independent elastic constants of $m\hbox {-ZrO}_{2}$ at temperatures to 3200 K are theoretically investigated for the first time. It is found that with increasing temperature, all elastic constants change, especially $C_{35}\hbox { and }C_{25}$ change rapidly in the temperature range of 1400 K to 1600 K and 2200 K to 2600 K, respectively. We also obtain the bulk modulus $B$ , shear modulus $G$ , Young’s moduli $E$ , as well as Poisson’s ratio $\sigma $ of $m\hbox {-ZrO}_{2}$ at high temperatures. Our work suggests that it is very important to predict the melting properties of materials via the elastic constants at temperatures.  相似文献   

4.
During the various carbon dioxide capture and storage (CCS) stages, an accurate knowledge of thermodynamic properties of \(\mathrm{CO}_{2}\) streams is required for the correct sizing of plant units. The injected \(\mathrm{CO}_{2}\) streams are not pure and often contain small amounts of associated gaseous components such as \(\mathrm{O}_{2}, \mathrm{N}_{2}\) , \(\mathrm{SO}_{x}, \mathrm{NO}_{x}\) , noble gases, etc. In this work, the thermodynamic behavior and transport properties of some \(\mathrm{CO}_{2}\) -rich mixtures have been investigated using both experimental approaches and molecular simulation techniques such as Monte Carlo and molecular dynamics simulations. Using force fields available in the literature, we have validated the capability of molecular simulation techniques in predicting properties for pure compounds, binary mixtures, as well as multicomponent mixtures. These validations were performed on the basis of experimental data taken from the literature and the acquisition of new experimental data. As experimental data and simulation results were in good agreement, we proposed the use of simulation techniques to generate new pseudo-experimental data and to study the impact of associated gases on the properties of \(\mathrm{CO}_{2}\) streams. For instance, for a mixture containing 92.0 mol% of \(\mathrm{CO}_{2}\) , 4.0 mol% of \(\mathrm{O}_{2}\) , 3.7 mol% of Ar, and 0.3 mol% of \(\mathrm{N}_{2}\) , we have shown that the presence of associated gases leads to a decrease of 14 % and 21 % of the dense phase density and viscosity, respectively, as compared to pure \(\mathrm{CO}_{2}\) properties.  相似文献   

5.
Ferroelectric \(\hbox {BiFeO}_3\) (BFO) thin films were deposited on (001) \(\hbox {SrTiO}_3\) substrates buffered with \(\hbox {La}_{0.7}\hbox {Sr}_{0.3}\hbox {MnO}_3\) (LSMO) electrodes. Bipolar resistive switching in Pt/BFO/LSMO heterostructures were observed with high stability and long retention. However, transport characteristics of Pt/BFO/LSMO is highly asymmetric and pronounced resistive switching can only be observed by applying negative reading pulses on the Pt top electrodes, i.e. when the Pt/BFO Schottky barrier is reverse-biased. This resistive switching is discussed in terms of a modulation on the Pt/BFO interface Schottky barrier by the polarization switching in ferroelectric BFO. Comparative studies on Pt/BFO/ \(\hbox {SrRuO}_3\) and Pt/BFO/ \(\hbox {LaNiO}_3\) heterostructures reveal that the work function of the electrode materials and the formation of Schottky barriers are significant to the observed resistive switching behaviors.  相似文献   

6.
In this work, a photothermal beam deflection spectroscopy setup is developed and applied for determination of the thermal parameters (thermal diffusivity and thermal conductivity) of \(\upalpha \) - and \(\upvarepsilon \) -Fe \(_{2}\hbox {O}_{3}\) nanodeposits on Si(100) substrates, specifically designed and tested as photocatalysts. It was observed that thermal parameters of the material strongly depend on the sample composition and morphology, which affect also the photocatalytic activity. The correlation between the thermal and photocatalytic properties are critically discussed based on the characteristics of the materials.  相似文献   

7.
Rough two-dimensional substrates, such as thermally deposited \(\hbox {CaF}_2\) , have been shown to modify the experimental signatures of the superfluid transition in adsorbed thin helium films. Previous experiments have investigated a series of increasingly rough surfaces over a limited temperature range and found that the features at the superfluid transition become less defined as substrate roughness is increased. In this work we study the superfluid transition in adsorbed helium films over a wide range of temperatures for a series of \(\hbox {CaF}_2\) substrates. Our results show that as the transition temperature increases the abrupt jump in superfluid density at the transition becomes less distinct. The changing characteristics of the transition on a single \(\hbox {CaF}_2\) substrate with temperature suggest that the reduced observability of the transition on rough substrates cannot be explained entirely by superfluid drag. We discuss several other possible scenarios which may be relevant to the helium films on \(\hbox {CaF}_2\) .  相似文献   

8.
Investigated are the changes in the basal-plane electrical resistivity of an optimally doped \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) single crystal in the course of long-term aging (17 years) at room temperature in air. In consequence of aging the sample has decomposed into three phases with different temperatures of the superconducting transition, while the transition widths of these phases have increased significantly. The temperature dependence of the electrical resistivity has retained a metallic character. The fluctuation conductivity near the critical temperature is described well by the 3D Aslamazov–Larkin model. In the course of aging significant changes in the scattering characteristics have been observed, whereas the Debye temperature has changed slightly and the transverse coherence length has remained constant.  相似文献   

9.
The structural, phonon, and thermodynamic properties of the cubic \(\hbox {CeO}_{2}\) are investigated from first-principles calculations. The calculated lattice parameters, bulk modulus, and phonon dispersion curves are in agreement with available experimental data and other calculations. It is shown that the local density approximation (LDA)+ \(U\) method is more suitable for describing the properties of \(\hbox {CeO}_{2}\) compared with the LDA method. The pressure and temperature dependences of the specific heat, Debye temperature, and the thermal expansion coefficient are successfully obtained from the Debye–Grüneisen model by combining with the phonon density of states.  相似文献   

10.
The LUMINEU project aims at developing a pilot double beta decay experiment using scintillating bolometers based on ZnMoO \(_4\) crystals enriched in \(^{100}\hbox {Mo}\) . In the next months regular deliveries of large-mass \(\hbox {ZnMoO}_4\) crystals are expected from the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia). It is therefore crucial for the LUMINEU program to test systematically and in real time these samples in terms of bolometric properties, light yield and internal radioactive contamination. In this paper we describe an aboveground cryogenic facility based on a dilution refrigerator coupled to a pulse-tube cooler capable performing these measurements. A 23.8 g \(\hbox {ZnMoO}_4\) crystal was fully characterised in this setup. We show also that macro-bolometers can be operated with high signal-to-noise ratio in liquid-free dilution refrigerators.  相似文献   

11.
A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2}\mathrm{O}_{3}\) \(\mathrm{B}_{2}\mathrm{O}_{3}\) ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) system was estimated. Fusibility diagrams of systems \(\mathrm{BiBO}_{3}\) \(\mathrm{YbBO}_{3}\) and \(\mathrm{Bi}_{4} \mathrm{B}_{2} \mathrm{O}_{9}\) \(\mathrm{YbBO}_{3}\) were studied by physical–chemical analysis. The isothermal section of the phase diagram of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) at 298 K is built, as well as the projection of the liquid surface of \(\mathrm{BiBO}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) \(\mathrm{YbBO}_{3}\) .  相似文献   

12.
The densities of solid and liquid Cu \(_{48}\) Zr \(_{52}\) and the viscosity of the liquid were measured in a containerless electrostatic levitation system using optical techniques. The measured density of the liquid at the liquidus temperature (1223 K) is (7.02 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) and the density of the solid extrapolated to that temperature is (7.15 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) . The thermal expansion coefficients measured at 1223 K are (6.4 \(\pm \) 0.1) \(\,\times \,10^{-5}\) K \(^{-1}\) in the liquid phase and (3.5 \(\pm \) 0.3) \(\,\times \,10^{-5}\) K \(^{-1}\) in the solid phase. The viscosity of the liquid, measured with the oscillating drop technique, is of the form \(A\exp \left[ \left( {{E}_{0}}+{{E}_{1}}\left( 1/T-1/{{T}_{0}} \right) \right) \times \left( 1/T-1/{{T}_{0}} \right) \right] \) , where \({{T}_{0}}=1223\) K, \(A= (0.0254 \pm 0.0004)\) Pa \(\cdot \) s, \({{E}_{0}}\) =  (8.43 \(\pm \) 0.26) \(\,\times \,10^3\) K and \({{E}_{1}}\) =  (1.7 \(\pm \) 0.2) \(\,\times 10^7\) K \(^{2}\) .  相似文献   

13.
A series of \((1-x) \text {YBa}_{2}\text {Cu}_{3}\text {O}_{7-y} + x \text {BaSnO}_{3 }(x = 0.0, 0.1, 0.3, 0.5, 1.0, 2.5, 5.0\,\text {wt}{\%})\) samples were prepared using the solid-state reaction method. XRD graphs confirm the orthorhombic structure in pristine as well as in composite samples. Raman spectra show the presence of all the vibration modes in pure as well as in the composite samples. In addition, some defect-induced modes have also appeared in the higher weight % BSO-added sample, and no loss of apical oxygen O(4) at 500 cm \(^{-1}\) occurs due to BaSnO \(_{3}\) (BSO) addition. Microstructural analysis reveals the unchanged grain size with the incorporation of dielectric BSO particles in the YBCO matrix. Superconducting transition temperature determined from standard four-probe method decreases with the increase of BSO wt%. Excess conductivity fluctuation analysis using Aslamazov–Larkin model fitting reveals transition of two dominant regions (2D and 3D) above \(T_\mathrm{c}\) . 2D to 3D crossover temperature i.e. Lawrence–Doniach temperature that demarcates dimensional nature of fluctuation inside the grains is influenced by BSO incorporation in YBCO matrix.  相似文献   

14.
Thin films of optimally doped(001)-oriented \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) are epitaxially integrated on silicon(001) through growth on a single crystalline \(\hbox {SrTiO}_{3}\) buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the \(\hbox {SrTiO}_{3}\) buffer enables high quality \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films exhibiting high transition temperatures to be integrated on Si. For a 30-nm thick \(\hbox {SrTiO}_{3}\) buffer, 50-nm thick \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films that exhibit a transition temperature of \(\sim \)93 K, and a narrow transition width (<5 K) are achieved. The integration of single crystalline \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) on Si(001) paves the way for the potential exploration of cuprate materials in a variety of applications.  相似文献   

15.
The element \(\hbox {Co}^{3+}\) was introduced into lithium-rich material \(0.5\hbox {Li}_{2}\hbox {MnO}_{3} \cdot 0.5 \hbox {LiNi}_{0.5}\hbox {Mn}_{0.5}\hbox {O}_{2}\) by a polyacrylamide-assisted sol–gel method to form \(\hbox {Li}[\hbox {Li}_{0.2} \hbox {Ni}_{0.1} \hbox {Mn}_{0.5} \hbox {Co}_{0.2}]\hbox {O}_{2}\) and better electro-chemical performances were observed. Electrochemical impedance spectroscopy spectra were measured on 11 specific open circuit voltage levels on the initial charge profile. Then they were converted to the distribution of relaxation times (DRTs) g(\(\tau \)) by self-consistent Tikhonov regularization method. The obtained DRTs offered a higher resolution in the frequency domain and provided the number and the physical origins of loss processes clearly. Through the analysis of DRTs, the rapid augmentation of resistance to electronic conduction and charge transfer within the voltage range 4.46–4.7 V where the removal of \(\hbox {Li}_{2}\hbox {O}\) from \(\hbox {Li}_{2} \hbox {MnO}_{3}\) component took place was the most remarkable phenomenon and the \(\hbox {Co}^{3+}\) doping greatly reduced the resistance to electronic conduction Re. This gave us more evidence about the complicated ‘structurally integrated’ composite character of the material.  相似文献   

16.
We report on the plasma-assisted molecular-beam epitaxy of semipolar $\hbox{AlN}(11\bar{2}2)$ and GaN( $11\bar{2}2$ ) films on $(1\bar{1}00)$ m-plane sapphire. AlN deposited on m-sapphire settles into two main crystalline orientation domains, $\hbox{AlN}(11\bar{2}2)$ and $\hbox{AlN}(10\bar{1}0),$ whose ratio depends on the III/V ratio. Growth under moderate nitrogen-rich conditions enables to isolate the $(11\bar{2}2)$ orientation. The in-plane epitaxial relationships of $\hbox{AlN}(11\bar{2}2)$ on m-plane sapphire are $[11\bar{2}\bar{3}]_{\rm AlN} \vert \vert [0001]_{\rm sapphire}$ and $[1\bar{1}00]_{\rm AlN} \vert \vert [11\bar{2}0]_{\rm sapphire}.$ GaN deposited directly on m-sapphire results in ( $11\bar{2}2$ )-oriented layers with ( $10\bar{1}\bar{3}$ )-oriented inclusions. A ~100 nm-thick AlN( $11\bar{2}2$ ) buffer imposes the ( $11\bar{2}2$ )-orientation for the GaN layer grown on top. By studying the Ga-desorption on GaN( $11\bar{2}2$ ), we conclude that these optimal growth conditions corresponds to a Ga excess of one monolayer on the GaN( $11\bar{2}2$ ) surface.  相似文献   

17.
Based on the extended three-parameter corresponding-states principle and the most reliable experimental data of $n$ -alkanes, a generalized fundamental equation of state for technical calculations has been developed. This equation is in the form of the reduced Helmholtz free energy and takes the reduced density, reduced temperature, and acentric factor as variables. The proposed equation satisfies the critical conditions and Maxwell rule, shows correct behavior for the ideal curves and for the derivatives of the thermodynamic potentials, and allows the calculation of all thermodynamic properties including phase equilibrium of $n$ -alkanes from $n$ -pentane $(\hbox {C}_{5})$ to $n$ -pentacontane $(\hbox {C}_{50})$ over a temperature range from the triple point to 700 K with pressures up to 100 MPa. The new equation differs from the previous generalized equations of other authors by a wider range of variation of the acentric factor $\omega =0.25$ to 1.8, and by more accurately predicting thermal properties.  相似文献   

18.
The radiative properties of dense ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates are investigated from the visible to the mid-infrared region at room temperature. Each specimen has different surface finishings on different sides of the laminate. A monochromator was used with an integrating sphere to measure the directional-hemispherical reflectance and transmittance of these samples at wavelengths from 0.4 \(\upmu \hbox {m}\) to 1.8 \(\upmu \hbox {m}\). The specular reflectance was obtained by a subtraction technique. A Fourier-transform infrared spectrometer was used to measure the directional-hemispherical or specular reflectance and transmittance with appropriate accessories from about 1.6 \(\upmu \hbox {m}\) to 19 \(\upmu \hbox {m}\). All measurements were performed at near-normal incidence on either the smooth side or the rough side of the sample. The experimental observations are qualitatively interpreted considering the optical constants, surface roughness, and volume scattering and absorption.  相似文献   

19.
It can be noted that the germanate glass–ceramic is a functional material with excellent thermal stability which can be used in optical devices. The temperature-dependent effective thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramics from 295.5 K to 780 K are determined using a \(3\omega \) method. One of the main advantages for the \(3\omega \) method is to diminish radiation errors effectively when the temperature is as high as 1000 K. Thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) increase with a rise in temperature. Effective thermal conductivities of a sample increase from \(1.55~\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 295.5 K to \(7.64~\hbox {W}\cdot \,\hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 698.1 K. The effective thermal conductivity of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramic increases with a rise of temperature. This investigation can be used as a basis for the measurement of thermal properties of ceramic materials at higher temperature.  相似文献   

20.
$\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 magnetoelectric (ME) ceramics have been synthesized and investigated. The ME effect can be described as an induced electric polarization under an external magnetic field or an induced magnetization under an external electric field. The materials in the ME effect are called ME materials, and they are considered to be a kind of new promising materials for sensors, processors, actuators, and memory systems. Multiferroics, the materials in which both ferromagnetism and ferroelectricity can coexist, are the prospective candidates which can potentially host the gigantic ME effect. $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 , an Aurivillius compound, was synthesized by sintering a mixture of $\mathrm{Bi}_{2}\mathrm{O}_{3}, \mathrm{Fe}_{2}\mathrm{O}_{3}$ Bi 2 O 3 , Fe 2 O 3 , and $\mathrm{TiO}_{2}$ TiO 2 oxides. The precursor materials were prepared in a high-energy attritorial mill for (1, 5, and 10) h. The orthorhombic $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 ceramics were obtained by a solid-state reaction process at 1313 K. The ME voltage coefficient ( $\alpha _\mathrm{ME}$ α ME ) was measured using the dynamic lock-in method. The highest ME voltage coefficient ( $\alpha _\mathrm{ME} = 8.28\,\text{ mV }{\cdot }\text{ cm }^{-1}{\cdot }\text{ Oe }^{-1})$ α ME = 8.28 mV · cm ? 1 · Oe ? 1 ) is obtained for the sample milled for 1 h at $H_\mathrm{DC }= 4$ H DC = 4  Oe (1 Oe = 79.58  $\text{ A }{\cdot }\text{ m }^{-1})$ A · m ? 1 ) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号