首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
在热回复条件下,采用Gleeble-1500D热/力模拟实验机,研究测试了高强耐候钢Q450NQR1(/%:0.05~0.10C、0.30~0.50Si、0.80~1.00Mn、≤0.020P、≤0.008S、0.20~0.40Cu、0.15~0.35Ni、0.40~0.60Cr)200mm×1 350 mm铸坯试样在700~1 000℃,热拉伸应变率5×10-3 s-1时的强度、塑性模量和断面收缩率。结果表明,随温度下降铸坯塑性模量(硬化系数)和强度增加,800℃时铸坯的强度随温度的变化速率出现明显转变;925~700℃时铸坯断面收缩率≤60%;为保证铸坯质量,在矫直过程铸坯表面温度应≥950℃。  相似文献   

2.
采用热膨胀仪测试研究了Q450NQR1钢连铸坯5℃·min-1及20℃·min-1冷却速率下的线性热膨胀(ΔL/L0)和热膨胀系数随温度的变化规律.在此基础上,建立了一种基于平均原子体积的相体积计算模型,量化研究了奥氏体相变过程中各相体积分数的变化规律,并在将计算结果与显微组织观察结果对比分析基础上,讨论了连铸冷却速率对铸坯奥氏体相变过程的影响.结果表明:该计算模型可以较为准确地描述铸坯的奥氏体相变过程,适用于多相连续析出相变;随着冷却速率的增大,铸坯热膨胀曲线中对应于铁素体和珠光体析出的两个变化峰向低温区移动,峰值明显增大;冷却速率由5℃·min-1上升至20℃·min-1时,铁素体及珠光体起始析出温度分别降低约32℃和37℃,最终体积分数分别由0.894和0.106变为0.945和0.055.   相似文献   

3.
利用Gleeble-3500热模拟试验和Factsage7.0软件、扫描电子显微镜、红外热像仪等方法对微合金化0.125%C C36船板钢250 mm×2070 mm连铸板坯高温热塑性及其角部横裂纹的形成机理进行了系统分析。结果表明,800~1 200℃为C36船板钢的高温塑性区间,其中800~1 000℃的断面收缩率为75.5%~80.9%,1 050~1 200℃的断面收缩率达到87.8%~95.0%。第二相粒子NbC在950~1 100℃的大量析出是阻碍该变形温度下C36船板钢中再结晶晶粒长大的主要原因。C36船板钢铸坯角部横裂纹形成于外弧且为沿晶脆性开裂,其裂纹的形成可能与其连铸二冷9段铸坯外弧角部温度(706℃)接近脆性温度区间且进行了静态压下有关。通过将C36钢连铸拉速从0.90 m/min提高至0.95 m/min,铸坯外弧角温度由706℃提高至731℃,铸坯外弧角裂纹发生率由5.67%降至3.68%。  相似文献   

4.
用Gleeble-2000热模拟机研究了Q345C钢250 mm×1 300 mm连铸坯热履历-连铸坯冷却过程和冷坯加热过程(300~1 320℃)的温度变化,应变速度(3~3×10-4 s-1)和降温速率(1~20℃/s)对热塑性的影响。结果表明,Q345C钢从1320℃冷却到钢的第Ⅲ脆性区,冷却速度越高,钢在第Ⅲ脆性区塑性越差;在600~850℃,连铸坯冷装加热后的热塑性要好于从液态直接冷却到这个温度区间的热塑性;在钢的第Ⅲ脆性区内,钢的热塑性随变形速率增大而变好。  相似文献   

5.
15CrMoG钢Φ450 mm管坯连铸二冷工艺的优化   总被引:1,自引:0,他引:1  
建立了15CrMoG钢(%0.12~0.18C,0.80~1.10Cr,0.40~0.55Mo)弧形连铸Φ450 mm圆管坯的二冷工艺模型以优化连铸二冷工艺.生产结果表明,在0.4~0.6 m/min拉速下生产Φ450 mm 15CrMoG钢圆管坯时,采用弱二冷工艺,二冷比水量0.30~0.35 L/kg,延长二冷区长度,控制铸坯进入矫直点前表面温度在950 ℃以上,则铸坯的等轴晶率达47.0%~49.3%,无中心缩孔,近表面和中间裂纹0级,中心裂纹0~0.5级,断面碳偏析ΔC%为0.02%,硫偏析ΔS%为0.005%,满足了生产无缝管的铸坯质量要求.  相似文献   

6.
齐新霞  贾琦 《特殊钢》2022,43(4):1-4
以Q460钢(/%:0.17C,0.35Si,1.5Mn,0.020P,0.020S,0.020Nb,0.075V)3 250 mm×150 mm宽板坯为研究对象,采用ANSYS软件建立凝固传热模型,研究拉坯速度、比水量、过热度等工艺参数对铸坯凝固过程的影响。模拟结果表明:拉坯速度每增大0.10 m/min,矫直段铸坯表面温度升高36.5℃,出坯温度升高50℃,坯壳厚度减薄2.4 mm,液心长度增加1.2 m;每增加1℃的过热度,矫直点铸坯上表面中心温度增加1.73℃,延长液芯长度0.11 m;因此,拉坯速度是影响铸坯质量的关键。生产应用表明,3 250 mm×150 mm板坯拉速1.20~1.25 m/min,过热度15~20℃时板坯表面矫直温度大于950℃,降低了铸坯中心疏松和偏析,表面质量显著提高。  相似文献   

7.
通过Gleeble-3500高温模拟试验机对Q460C钢种高温塑性区间进行了测定,深入分析了Q460C钢的高温断裂机理,确定了最佳的铸坯矫直区间。研究表明:600℃~800℃为Q460C钢的低温脆性区,在该区间断裂形式以混合断裂为主;900℃~1 050℃塑性最好,断面收缩率在85%以上,此时的断裂形式为韧性断裂;在1 050℃~1 250℃拉伸时断面收缩率有所降低,但仍在75%以上,通过对其断口分析发现其主要原因是Nb(CN)的沉淀析出造成。  相似文献   

8.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

9.
《特殊钢》2015,(5)
利用Gleeble 1500D热模拟试验机,对开发的Q370qE-HPS高性能桥梁钢(/%:0.09C,0.36Si,1.33Mn,0.013P,0.004S,0.036Nb,0.015Ti,0.022Als,0.33CEV)230 mm×1 400 mm连铸坯进行700~1 050℃的热塑性试验研究。结果表明,Q370qE-HPS高性能桥梁钢800~1 050℃为高塑性区间,与传统正火工艺桥梁钢Q370qE(/%:0.14C,0.38Si,1.45Mn,0.012P,0.004S,0.028Nb,0.014Ti,0.023Als,0.38CEV)相比较,Q370qE-HPS钢高塑性的温度范围较大;700~800℃为低塑性区间,在此区间沿奥氏体晶界析出的铁素体膜使抗拉强度降低,尤其当晶界处存在Nb-Ti碳氮化物时,应力作用下容易产生裂纹和孔隙,从而使钢的热塑性降低。  相似文献   

10.
低合金高强度钢Q345E(/%:0.12~0.15C,0.20~0.25Si,1.40~1.50Mn,≤0.010P,≤0.005S)的生产流程为80 t顶底复吹转炉-LF-RH-Φ450 mm铸坯CC-Φ110 mm棒材连轧工艺。工艺试验了压缩比(10.33~20.25)、开轧温度(1120~1 080℃)和冷却方式(0.2℃/s空冷和0.5℃/s风冷)对该钢-40℃,V-型缺口冲击韧性的影响。结果表明,随压缩比增加,开轧温度降低,冷却速度增加,该钢-40℃冲击功显著增加,采用压缩比16.74,开轧温度1100℃,0.5℃/s风冷工艺,Q345E钢组织细小、均匀,-40℃冲击功为40 J。  相似文献   

11.
Q345C钢连铸板坯热送热装过程中温度场和应力场模拟   总被引:1,自引:0,他引:1  
王生朝  孙斌 《特殊钢》2016,37(1):13-16
考虑板坯钢种弹性模量、导热系数、比热容及线膨胀系数对模拟精度的影响,通过ABAQUS有限元分析软件对Q345C钢250 mm×1500 mm单块连铸板坯冷却过程应力场和温度场进行模拟,经处理得出应力(<20~148 MPa)、温度(769~1000℃)和时间(0~1200 s)三者的关联信息。计算结果表明,板坯空冷温度沿宽度方向分布不均匀,板坯表层边部降温速率0.46℃/s,板坯表层距边部200 mm以外,基本具有相同的温降速率(0.23℃/s);铸坯堆垛空冷速度较低,约为15℃/h,和现场实测结果吻合。应将连铸坯从火焰切割机到板坯加热炉输送时间降到最短,以及增加保温措施,防止表面热应力过大而形成缺陷。  相似文献   

12.
董方  郄俊懋  邓浩华 《特殊钢》2014,35(4):52-54
采用Gleeble-1500D热模拟机、DILA02C热膨胀仪和STA449F3综合热分析仪,测试分析了304不锈钢(/%:0.040C,0.45Si,1.18Mn,0.030P,0.003S,17.24Cr,8.11Ni)40 mm×1 500 mm热轧板的线膨胀系数、差热(DSC)及定压热容(Cp)曲线和高温力学性能。结果表明,304不锈钢的第I脆性区为1 300℃到熔点,第Ⅲ脆性区为950~1 050℃,在1 050~1 250℃C,断面收缩率≥60%,塑性较好。钢的膨胀及收缩系数分别为20.97×10-6~21.56×10-6与21.25×10-6~21.84×10-6,属裂纹敏感性钢种。1 000~1 400℃升温过程中,Cp曲线波动大,存在晶型转变,易产生缺陷。304钢在1 450~1 200℃降温过程中,DSC曲线不平滑,有相变发生,易产生裂纹。  相似文献   

13.
使用NETZSCH DIL 402C热膨胀仪与STA449F3综合热分析仪,对304不锈钢的高温膨胀与收缩系数、定压热容(cp)及差示扫描量热(DSC)曲线进行测试。测试结果表明:304不锈钢在升温过程中膨胀系数的范围为20.9700×10-6~21.5712×10-6K-1,降温过程中收缩系数范围为21.2528×10-6~21.9471×10-6K-1,膨胀及收缩系数较大,属裂纹敏感性钢种; 在900~1400℃升温过程中,定压热容曲线波动幅度较大,存在晶型? 洌魑榷ㄐ越喜睿撞毕荩籇SC曲线测试中,升温过程在1420.8℃存在明显吸热峰,试样开始熔化,峰值温度为1438.86℃;降温过程中,1439℃时存在明显的放热峰,试样开始凝固,峰值温度为1435.6℃。在1439~1100℃降温过程中,曲线不平滑,热稳定性较差,有相变发生,初始坯壳生长不均匀,这些温度点属于结晶器中上部温度范围,此范围内铸坯易产生裂纹。  相似文献   

14.
泰山不锈钢厂采用60 t电弧炉-GOR底吹转炉精炼-160 mm×1600 mm板坯连铸的工艺流程冶炼不锈钢。通过Gleeble-1500D热模拟试验机试验研究了奥氏体不锈钢201(6.54Mn-16.71Cr-3.62Ni)和J4(8.93Mn-14.84Cr-1.08Ni-1.25Cu),铁素体不锈钢430(16.29Cr)和马氏体不锈钢410S(13.5Cr)连铸板坯的高温力学性能。结果表明,各不锈钢的第Ⅲ脆性温度区分别为201钢-665~990℃,J4钢-600~950℃,430钢-600~700℃和410S钢-720~930℃;201和J4钢采用较弱二次冷却,矫直温度分别控制为≥1010℃和≥995℃,430钢用较强二次冷却,矫直温度900~950℃;410S钢用较弱二次冷却,矫直温度≥980℃。  相似文献   

15.
对钢厂0.07%~0.18%C钢220~320 mm×1 800~2700 mm宽厚板的连铸过程进行了一年的在线检测与统计,研究了不同碳含量的钢种的拉速(0.65~1.2 m/min),钢水过热度(13~35℃),结晶器进水温度(27~35℃)和结晶器液位(775~810 mm)等工艺参数对结晶器铜板热流的影响。结果表明,浇铸220 mm板坯的结晶器热流随拉速增加而上升,但拉速>1.05 m/min时热流不再增大;对具有包晶反应的钢种,宽面与窄面热流随钢液过热度的增加而增大,但进水温度升高,热流降低;受包晶相变收缩的影响,浇铸0.13%C钢时结晶器热流最低。  相似文献   

16.
王生朝  赵刚  鲍思前 《特殊钢》2012,33(6):56-58
通过Thermecmastor-Z热模拟试验机研究了WL510钢(/%:0.090C、0.13Si、1.45Mn、0.005S、0.019P、0.040Al、0.020Ti、0.030Nb)粗轧后板坯(36 mm×1 500 mm)在1~36℃/s连续冷却条件下的相变和组织的变化,并用热膨胀法测定了试验钢连续冷却转变(CCT)曲线。结果表明,试验钢WL510在1~23℃/s低冷却速度下,主要形成多边形铁素体和少量珠光体;当冷却速度≥30℃/s时,主要组织为细针状铁素体、少量细珠光体和岛状马氏体/奥氏体(M/A)随着冷却速度的增加,试验钢组织明显变细。  相似文献   

17.
谢集祥  罗钢  刘浏  汪成义 《特殊钢》2020,41(2):10-14
基于涟钢板坯连铸机结构参数和冷却条件,建立了Q235B 230 mm×1 280 mm板坯连铸过程凝固传热的数值模型,研究了铸坯温度分布和坯壳厚度变化规律以及过热度和拉速对铸坯温度和凝固末端位置的影响规律。得出:随过热度和拉速的增加,铸坯中心和角部温度整体呈升高趋势,在其它参数不变的条件下,过热度每升高10℃,铸坯凝固末端和液相消失位置分别后移约0.38 m和0.31 m;拉速每升高0.1 m/min,凝固末端和液相消失位置分别后移2.06 m和1.4 m。通过数值模拟研究,掌握了铸坯温度和凝固末端位置的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号