首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a weighted residual relationship is proposed as an extension of the standard virtual work principle to deal with the large deformation contact problem with Coulomb friction. This weak form is a mixed relationship involving the displacements and the multipliers defined on the reference contact surface of the contactor and is shown to be equivalent to the strong form of the initial/boundary value contact problem. The discretization in space by means of the finite element method is carried out on the mixed relationship in a simple way in order to obtain the semi-discrete equation system. The contact tangent stiffness is derived and numerical examples are presented to assess the efficiency of the formulation.  相似文献   

2.
A large deformation theory for in-plane beam problems, analogous to Budiansky's non-linear shell theory, is formulated. The formulation results in objective equations. A finite element representation of displacements, using cubic interpolating functions, is combined with the virtual work form of these equations, in order to obtain numerical solutions. The capability of the formulation is demonstrated by computing the displacements associated with a thin cantilever strip, subjected to pure moment, until it forms a complete circle. A solution of the elastica problem illustrates a potential of the formulation in solving ‘post-buckling’ problems.  相似文献   

3.
The arch problem with shear deformation based upon the Hellinger-Reissner variational formulation is studied in a parameter-dependent form. A mixed Petrov-Galerkin method is used to construct a discrete approximation. Finite elements with equal-order discontinuous stress and continuous displacement interpolations, unstable in the Galerkin method, are proved to be stable in the new formulation. Error estimates indicate optimal rates of convergence for displacements and suboptimal rates, with gap one, for stresses. Numerical experiments confirm these estimates. The good accuracy of the mixed Petrov-Galerkin method is illustrated in some deep and shallow thin arch examples. No shear or membrane locking is present using full integration schemes.  相似文献   

4.
The results of a detailed study of the nonlinear and postbuckling responses of curved unstiffened composite panels with central circular cutouts are presented. The panels are subjected to uniform temperature change and an applied in-plane edge shear loading. The analysis is based on a first-order shear-deformation Sanders-Budiansky type theory with the effects of large displacements, moderate rotations, transverse shear deformation and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. Numerical results are presented for cylindrical panels with central circular cutouts and are subjected to uniform temperature change and an applied in-plane edge shear loading. The results show the effects of variations in the panel curvature, hole diameter, laminate stacking sequence and fiber orientation, on the nonlinear and postbuckling panel responses, and their sensitivity to changes in the various panel, layer and micromechanical parameters.  相似文献   

5.
This paper presents a mixed finite element model for the static analysis of laminated composite plates. The formulation is based on the least-squares variational principle, which is an alternative approach to the mixed weak form finite element models. The mixed least-squares finite element model considers the first-order shear deformation theory with generalized displacements and stress resultants as independent variables. Specifically, the mixed model is developed using equal-order C0 Lagrange interpolation functions of high p-levels along with full integration. This mixed least-squares-based discrete model yields a symmetric and positive-definite system of algebraic equations. The predictive capability of the proposed model is demonstrated by numerical examples of the static analysis of four laminated composite plates, with different boundary conditions and various side-to-thickness ratios. Particularly, the mixed least-squares model with high-order interpolation functions is shown to be insensitive to shear-locking.  相似文献   

6.
A general formulation for the analysis of composite beams with partial interaction, in which the basic equilibrium and compatibility equations are expressed in terms of displacements, is presented. Numerical solutions of the basic equations are obtained by expressing the displacement derivatives in finite difference form, and the solutions so obtained show close agreement with existing analytical solutions for linear material and shear connector behaviour.  相似文献   

7.
The paper is focused on a piezoelectric solid shell finite element formulation. A geometrically nonlinear theory allows large deformations and includes stability problems. The formulation is based on a variational principle of the Hu–Washizu type including six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. The element has eight nodes with displacements and the electric potential as nodal degrees of freedom. A bilinear distribution through the thickness of the electric field is assumed to obtain correct results in bending dominated situations. The presented element is able to model arbitrary curved shells and incorporates a 3D-material law. Numerical examples demonstrate the ability of the proposed model to analyze piezoelectric devices.  相似文献   

8.
Curved beam finite elements with shear deformation have required the use of reduced integration to provide improved results for thin beams and arches due to the presence of a spurious shear strain mode. It has been found that the spurious shear strain mode results from an inconsistency in the displacement fields used in the formulation of these elements. A new curved beam element has been formulated. By providing a cubic polynomial for approximation of displacements, and a quadratic polynomial for approximation of rotations a consistent formulation is ensured thereby eliminating the spurious mode. A rotational degree of freedom which varies quadratically through the thickness of the element is included. This allows for a parabolic variation of the shear strain and hence eliminates the need for use of the shear correction factor k as required by the Timoshenko beam theory. This rotational degree of freedom also provides a cubic variation of displacements through the depth of the element. Thus, the normal to the centroidal axis is neither straight nor normal after shearing and bending allowing for warping of the cross section. Material nonlinearities are also incorporated, along with the modified Newton-Raphson method for nonlinear analysis. Comparisons are made with the available elasticity solutions and those predicted by the quadratic isoparametric beam element. The results indicate that the consistent beam element provides excellent predictions of the displacements, stresses and plastic zones for both thin and thick beams and arches.  相似文献   

9.
Mixed isoparametric elements are presented for the geometrically nonlinear analysis of laminated composite shells. The analytical formulation is based on a form of the nonlinear shallow shell theory with the effects of shear deformation, material anisotropy and bending-extensional coupling included. The fundamental unknowns consist of the 13 stress resultants and generalized displacements of the shell. The generalized stiffness matrix is obtained by using a modified form of the Hellinger-Reissner mixed variational principle. Both triangular and quadrilateral elements are considered. The accuracy of the mixed isoparametric elements developed is demonstrated by means of numerical examples and their advantages over commonly-used displacement elements are discussed. Also, computational procedures are presented for the efficient evaluation of the elemental matrices and for overcoming the difficulties associated with the large, sparse system of equations of the mixed models thus making them competitive with displacement models.  相似文献   

10.
We present a physically based interactive simulation technique for de formable objects. Our method models the geometry as well as the displacements using quadratic basis functions in Bernstein?CBézier form on a tetrahedral finite element mesh. The Bernstein?CBézier formulation yields significant advantages compared to approaches using the monomial form. The implementation is simplified, as spatial derivatives and integrals of the displacement field are obtained analytically avoiding the need for numerical evaluations of the elements?? stiffness matrices. We introduce a novel traversal accounting for adjacency in order to accelerate the reconstruction of the global matrices. We show that our proposed method can compensate the additional effort introduced by the co-rotational formulation to a large extent. We validate our approach on several models and demonstrate new levels of accuracy and performance in comparison to current state-of-the-art.  相似文献   

11.
Mixed curved-beam finite elements are developed for the geometrically nonlinear analysis of deep arches. The analytical formulation is based on a form of the nonlinear deep-arch theory with the effects of transverse shear deformation and bending-extensional coupling included. The fundamental unknowns consist of the six internal forces and generalized displacements of the arch. The generalized stiffness matrix is obtained by using a modified form of the Hellinger-Reissner mixed variational principle. Numerical studies are presented to demonstrate the high accuracy of the solutions obtained by the mixed models and to show that their performance is considerably less sensitive to variations in the arch geometry than that of the displacement models.  相似文献   

12.
《Computers & Structures》1987,26(4):621-634
A mixed variational statement and corresponding finite element model are developed for an arbitrary plane body undergoing large deformations (i.e. large displacements, large rotations and small strains) under external loads using the updated Lagrangian formulation. The mixed finite element formulation allows the nodal displacements and stresses to be approximated independently. Two different contact algorithms are presented for the separate cases of a thin plate in contact with a rigid pin and a flexible pin, and the algorithms account for the computational difficulties that arise from the unknown contact area and the presence of friction between the pin and the plate.  相似文献   

13.
A symmetric stiffness formulation based on a boundary element method is studied for the structural analysis of a shear wall, with or without cutouts. To satisfy compatibility requirements with finite beam elements and to avoid problems due to the eventual discontinuities of the traction vector, different interpolation schemes are adopted to approximate the boundary displacements and tractions. A set of boundary integral equations is obtained with the collocation points on the boundary, which are selected by the error minimization technique proposed in this paper, and the stiffness matrix is formulated with those equations and symmetric coupling techniques of finite and boundary element methods. The newly developed plane stress element can have the openings in its interior domain and can be easily linked with the finite beam/column elements.  相似文献   

14.
《Computers & Structures》2007,85(17-18):1409-1419
We present a new strain-based finite element formulation for the dynamic analysis of highly flexible elastic planar beams. The formulation employs the geometrically exact Reissner planar beam theory which accounts for finite displacements and rotations, and finite membrane, shear and bending strains. The system of semi-discrete dynamic equations of motion is derived from the modified Hamilton principle in which only the strain variables are interpolated. Such a choice of the interpolated variables is an advantage over approaches, in which the displacements and rotations are interpolated, since the field consistency problem and related locking phenomena do not arise. The performance and accuracy of the formulation are illustrated by several numerical examples.  相似文献   

15.
This work presents an isogeometric finite element formulation based on Bézier extraction of the non-uniform rational B-splines (NURBS) in combination with a generalized unconstrained higher-order shear deformation theory (UHSDT) for laminated composite plates. The proposed approach relaxes zero-shear stresses at the top and bottom surfaces of the plates and no shear correction factors are required. A weak form of static, free vibration and transient response analyses for laminated composite plates is then established and is numerically solved using isogeometric Bézier finite elements. NURBS can be written in terms of Bernstein polynomials and the Bézier extraction operator. IGA is implemented with the presence of C°-continuous Bézier elements which allow to easily incorporate into existing finite element codes without adding many changes as the former IGA. As a result, all computations can be performed based on the basis functions defined previously as the same way in finite element method (FEM). Numerical results performed over static, vibration and transient analysis show high efficiency of the present method.  相似文献   

16.
17.
Fan  W. 《Multibody System Dynamics》2021,52(2):211-227
Multibody System Dynamics - A recursive rotational-coordinate-based formulation of a planar Euler–Bernoulli beam is developed, where large displacements, deformations, and rotations are...  相似文献   

18.
A new approach is used in this paper to derive the design sensitivity formulation with kinematical design boundaries. By employing the concept of the conventional finite difference approach, the variation of structural response due to change of the kinematic design boundary can be represented by the perturbed structure under a set of kinematical boundary conditions. Parameterization of the design variation with respect to the design variable enables us to transform the design sensitivity into the solutions of a boundary value problem with perturbation displacements on the design boundary. The perturbation diplacements can be evaluated from the stress and displacement fields of the initial problem. This approach can be treated as a special case of the general direct formulation, but the derivation using the finite difference procedure gives a strong physical meaning of the method, and the formulation derived provides an explicit form for design sensitivity calculation. The numerical implementation of this approach based on the boundary element method is discussed, and a few numerical examples are used to verify the proposed formulation.  相似文献   

19.
A finite element formulation for the large amplitude free oscillations of beams and orthotropic circular plates is presented in this paper. The present formulation does not need the knowledge of longitudinal/inplane forces developed due to large displacements and thus avoids the use of corresponding geometric stiffness matrices, which were used in earlier finite element formulations. The convergence of the results obtained by using the present formulation is very good. Comparison of the present results with the earlier work wherever possible confirms the reliability and effectiveness of the present finite element formulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号