首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The failure process of mode II delamination fracture is studied on the basis of the microscopic matrix failure modes (microcracks and hackles) as well as fracture mechanics principles. The crack tip matrix stresses leading to delamination is analysed by examining an adhesive bond with a crack analogous to a delamination crack in the resin layer of a composite. Such crack tip stresses induce matrix microcracks involving two major events: (a) single microcrack initiation and (b) development of multiple microcracks with regular spacing. The microcrack initiation shear stress τ* is found by the use of fracture mechanics to be related to certain resin properties (shear modulus G and mode I fracture toughness GIC) and microcrack length of the order of the resin layer thickness t (related to resin content). The more or less regular microcrack spacing S deduced from shear lag considerations can be related to resin properties GIC, G, τy (resin yield strength) and t. The multiple microcracks reduce the effective resin modulus and strongly affect the subsequent microcrack coalescence process. As a result of the detailed analysis of the failure process, mode II laminate fracture toughness GIIC can be quantitatively expressed as a function of resin GIC and (τ2y/G). The failure process modelled is used to interpret the mode II delamination behaviour of several carbon/epoxy systems studied here and that reported in the literature. This study reveals the critical importance of resin fracture (GIC related) and deformation (yielding) mechanisms in controlling mode II delamination resistance of laminated composites. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Composites produced by resin infusion techniques will inevitably suffer from variation in resin distribution due to imprecise fibre placement and distortion of the preform during mould closure and infusion. This paper describes an investigation into the effect of variations in fibre volume fraction (FVF) on mode I and mode II delamination behaviour for 5 harness satin (5HS) woven carbon–fibre/epoxy resin composites manufactured by resin transfer moulding (RTM). Additionally, the effect of satin face tow orientation on interlaminar toughness was investigated. In mode I, it was found that toughness increased with increasing FVF and that a strong correlation between fracture surface damage and measured interlaminar fracture toughness was observed. In mode II, measured toughness values were higher than expected and tests were repeated using a mixed-mode rig with 5% mode I. It was found that fracture toughness measurements in pure mode II are significantly affected by friction or mechanical interlocking between the delamination surfaces.  相似文献   

3.
The role of rubber particle type, location and morphology on toughening in blends of nylon 6,6 with styrene acrylonitrile (SAN), with and without fibre reinforcements was examined in this study. The rubber used was ethylene propylene diene monomer (EPDM) rubber and the results were compared to a previous study that used butadiene rubber. The compositions of the blends ranged from pure nylon 6,6 to pure SAN. EPDM rubber was chemically compatibilized with one of the matrix phases rather than grafted, as in the ABS. In order to study the effect of rubber location on fracture behaviour, the approach was to compatibilize EPDM with either the minor phase or the major phase component of the blend. Attention was focused on fracture initiation toughness and fracture propagation toughness, measured through the parameters J IC and J SS, respectively. J SS refers to the steady-state, or plateau value of the material R-curve and was therefore a measure of total toughness which included the additional component derived from crack extension. The results indicated that EPDM rubber was not as effective a toughening agent as was butadiene in the Acrylonitrile Butadiene Styrene (ABS) system, primarily due to the morphology of EPDM and its interface character with the nylon 6,6 or SAN matrix. It was demonstrated that the embrittlement effects of a second rigid polymer phase can be mitigated by selectively adding rubber to that phase in the alloy or blend. With regard to the role of fibre reinforcement, a strong fibre matrix interface was found to be essential for toughening. Further, the extent of rubber toughening was larger when fibres were present than when fibres were absent, provided the fibre matrix interface was strong. Fibres also, like rubber, enhanced local matrix plasticity as well as reduced the embrittlement effects associated with a second polymer phase.  相似文献   

4.
In this study, mode I and mode II interlaminar fracture toughness, and interlaminar shear strength of E-glass non-crimp fabric/carbon nanotube modified polymer matrix composites were investigated. The matrix resin containing 0.1 wt.% of amino functionalized multi walled carbon nanotubes were prepared, utilizing the 3-roll milling technique. Composite laminates were manufactured via vacuum assisted resin transfer molding process. Carbon nanotube modified laminates were found to exhibit 8% and 11% higher mode II interlaminar fracture toughness and interlaminar shear strength values, respectively, as compared to the base laminates. However, no significant improvement was observed for mode I interlaminar fracture toughness values. Furthermore, Optical microscopy and scanning electron microscopy were utilized to monitor the distribution of carbon nanotubes within the composite microstructure and to examine the fracture surfaces of the failed specimens, respectively.  相似文献   

5.
Abstract

The effects of mixed mode loading (I/II) on the fracture toughness and fracture behaviour of both 6090/SiC/20p-6013 diffusion bonded laminates and 2080/SiC/20p-2080 adhesive bonded laminates tested in the crack arrester orientation were investigated. The effects of layer thickness and volume fraction ratio on the fracture behaviour under the mixed mode were also studied. The fracture behaviour under mode I/II of available similar discontinuously reinforced aluminium (DRA) materials was additionally compared to that of the laminates. The fracture behaviour of laminates under mode I/II was dependent on the volume fraction ratio and generally different from that of the monolithic and DRA. The increase in the fracture toughness of DRA by lamination with ductile layers under mode I changes somewhat under increasing load mixity, for 75/25 and 50/50 diffusion bonded laminate and 60/40 adhesive bonded laminate ABL. This results from extensive interfacial separation and delamination between the layers.  相似文献   

6.
Fracture behaviour of PC/ABS resin under mixed-mode loading   总被引:2,自引:0,他引:2  
Fracture behaviour of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) under mixed-mode loading conditions was studied for several weight fractions of PC and ABS. Mode I and mixed-mode fracture tests were carried out by using compact–tension–shear specimens. At a certain value of mixed-mode loading ratio K II / K I a crack of the shear type will initiates at the initial crack tip. Fracture toughness increases under mixed-mode loading with an increase in the mode II component, whereas it reduces with the appearance of a shear-type fracture. Fracture toughness and the appearance of a shear-type fracture depends on the blending ratio of PC and ABS. The transition to shear-type fracture occurs at lower value of K II / K I for resins with higher fracture toughness.  相似文献   

7.
This paper evaluates the validity of a new test methodology for measuring shear fracture toughness (mode II) of high density polyethylene (HDPE). The methodology adopts Iosipescu test for the shear loading, and determines the toughness based on the essential work of fracture (EWF) concept. The results show that even under the Iosipescu loading, tensile deformation (mode I) is still involved in the fracture process, possibly due to the significant work hardening that HDPE develops during the plastic deformation. The study found that the mode II fracture toughness can be determined through data analysis using double linear regression, i.e., by extrapolating specific work of fracture to zero ligament length and zero ligament thickness. The paper demonstrates that the new test methodology can be used to evaluate mode II fracture toughness of ductile polymers like HDPE in which significant work-hardening may be involved in the fracture process. The paper also provides quantitative comparison of the fracture toughness for HDPE in mode II with its mode I counterpart.  相似文献   

8.
A 5050 wt % mixture of commingled glass/polypropylene fibre system was selected to study the correlations between the morphological details, mode II interlaminar fracture toughness and corresponding failure mechanisms. Mode II interlaminar fracture tests were performed by using the end-notched flexure test procedure. Compared to conventional composite laminates, mode II interlaminar crack extension in these commingled yarn-based composites was very stable, and extensive fibre nesting occurred along the main crack plane. Crack jumping and non-broken matrix links were observed.R-curve behaviour for these materials was identified and the toughness for initiation was much lower than that for propagation. Compared to mode I interlaminar fracture toughness, similar trends in effects of cooling rates and isothermal crystallizations on mode II interlaminar fracture toughness were observed. However, the effects were not as significant as those found for mode I interlaminar fracture toughness.Alexander von Humboldt Fellow.  相似文献   

9.
Effect of transverse normal stress on mode II fracture toughness of unidirectional fiber reinforced composites was studied experimentally in conjunction with finite element analyses. Mode II fracture tests were conducted on the S2/8552 glass/epoxy composite using off-axis specimens with a through thickness crack. The finite element method was employed to perform stress analyses from which mode II fracture toughness was extracted. In the analysis, crack surface contact friction effect was considered. It was found that the transverse normal compressive stress has significant effect on mode II fracture toughness of the composite. Moreover, the fracture toughness measured using the off-axis specimen was found to be quite different from that evaluated using the conventional end notched flexural (ENF) specimen in three-point bending. It was found that mode II fracture toughness cannot be characterized by the crack tip singular shear stress alone; nonsingular stresses ahead of the crack tip appear to have substantial influence on the apparent mode II fracture toughness of the composite.  相似文献   

10.
针对碳纤维/环氧树脂预浸料,对比了直接在树脂中加入碳纳米管(CNTs)后制备预浸料以及将CNTs喷涂在预浸料表面2种CNTs加入方式对CNTs-碳纤维/环氧树脂复合材料层合板I型与II型层间断裂韧性及层间剪切强度的影响。通过对树脂黏度、固化反应以及玻璃化转变温度的考察,分析了CNTs含量对树脂性能的影响,考察了添加方法对CNTs长度与形态的影响。分析了2种CNTs加入方式对CNTs-碳纤维/环氧树脂层合板断裂韧性及层间剪切强度的改善效果与作用规律。结果表明:CNTs的加入使树脂的黏度提高,固化反应程度下降;2种分散方法对CNTs的长度与形态无明显影响;直接在树脂中加入CNTs对CNTs-碳纤维/环氧树脂复合材料I型与II型层间断裂韧性的提高效果低于在碳纤维/环氧树脂预浸料表面喷涂CNTs的方式,后者的CNTs利用率较高;由于CNTs团聚及对树脂固化反应的影响,CNTs含量过高会使得其对CNTs-碳纤维/环氧树脂层合板的增韧效果下降。  相似文献   

11.
Adhesive joints in the transportation industry may be exposed to aggressive environments such as humidity during their service life, which may influence their reliability. This research aims to determine the fracture toughness of aluminium bonded joints under pure mode I, pure mode II and mixed mode I and II loadings in dry and wet condition, with the main purpose to predict the influence of humidity in the toughness properties of an adhesive. It was found that water does influence the fracture mechanics properties, increasing mode I fracture toughness and decreasing mode II fracture toughness.  相似文献   

12.
The impact fracture toughness of acrylonitrile-styrene-butadiene/polyamide-6 (ABS/PA6) blends compatibilized with 5% by weight carbon monoxide modified ethylene-n butyl acrylate-maleic anhydride (EnBACO-MAH) or ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymers were examined as a function of blend ratio by standard Charpy tests, Essential Work of Fracture (EWF) Methodology and fracture surface morphologies. The samples were first processed in twin-screw extruder and they were subsequently injection moulded. The incompatibilized blends and neat-PA6 fractured in brittle manner, whereas compatibilized blends fractured in ductile manner. The EWF values yielded a maximum when weight percentages of ABS and PA6 were equal to each other. The values obtained in the case of EnBACO-MAH were higher than that of EMA-GMA regardless of blend composition in EWF tests. The trend of impact strengths observed in standard notched Charpy impact tests was in accordance with that of EWF values of blends. The morphology of the ABS/PA6 blends exhibited differences as a function of the component ratio and compatibilizer type. These differences in topology of the fracture surfaces of the blends were utilized to understand the deformation mechanism, and to correlate the fracture toughness values of the blends.  相似文献   

13.
In certain application of fiber reinforced polymer composites fracture resistance is required. The aim of this study was to improve the interfacial adhesion between plain woven carbon fiber (CF) and epoxy matrix filled with microfibrillated cellulose (MFC) modified with carboxyl-terminated butadiene acrylonitrile (CTBN) as liquid rubber. CF/Epoxy/MFC/CTBN composite was characterized by different techniques, namely, tensile, bending, fracture toughness (mode I) test, and scanning electron microscope (SEM). The results reveal that at a fiber content 1% of MFC and 10% CTBN, initiation and propagation interlaminar fracture toughness in mode I improved significantly by 96 and 127%, respectively, which could be attribute to strong adhesion between filled epoxy, CF, and rubber. This can be explained by SEM at given weight as well; SEM images showed that in front of the tip, fiber breakage during initiation delimination as well as the extensive matrix deformation between fibers accounting for increase fracture toughness.  相似文献   

14.
This paper deals with the effect of basalt fibres on fracture toughness of asphalt mixture. For this purpose, basalt fibres with three different contents (i.e., 0.1%, 0.2%, and 0.3% by weight of asphalt mixture) and lengths (ie, 4, 8, and 12 mm) are incorporated into asphalt mixture to prepare fibre‐reinforced asphalt mixtures. Fracture tests are then carried out on these mixtures under four different modes of loading (i.e., pure mode I, pure mode II, and two mixed modes of I/II) using semicircular bend (SCB) specimens. The results exhibit that the fracture toughness increases with the enhancement of the fibre content. In addition, increase in the length of basalt fibre results in reduction of the fracture toughness of asphalt mixture. However, the asphalt mixture containing 0.3% of basalt fibres with the length of 4 mm shows the highest fracture toughness compared with other mixtures. It is also found that the basalt fibre improves mode I fracture toughness of asphalt mixtures more significantly than mode II one. Statistical analysis is also performed on the experimental data. Analysis of ANOVA demonstrates that all the three factors investigated in this study (i.e., length of basalt fibre, content of basalt fibre, and mode of loading) have significant influence on the fracture toughness of asphalt mixtures.  相似文献   

15.
《Composites Part A》1999,30(11):1311-1319
Effect of ionomer thickness on mode I interlaminar fracture toughness was investigated for the ionomer-interleaved CFRP. Laminates were fabricated with Toho UT500/111 prepregs. Ethylene-based ionomer, which has high ductility and good adhesion to epoxy resin, was used as an interleaf material in this study. Thickness of the ionomer film selected was 12, 25, 100 and 200 μm. EPMA analysis showed the existence of the interphase region between the interleaf film and the base prepreg lamina where ionomer and epoxy were mixed. Mode I fracture toughness tests were carried out using DCB specimens. Precracks were introduced into all of the specimens. Fracture toughness values were much improved by interleaving the ionomer films. The fracture toughness value increased sharply by inserting thin ionomer film; however, the additional increase with the increase of the ionomer thickness was smaller. The thickness effect of the ionomer interleaf differs from that of the other kinds of thermoplastic-interleaf. Microscopic observation revealed that the crack path depended on the thickness of the ionomer region. Crack propagated in the interphase/ionomer interfaces for thinner-ionomer-interleaved CFRP, and in the interphase region, at the interphase/base lamina interface and interphase/ionomer interface for thicker-ionomer-interleaved CFRP. Ionomer resin deformed largely only near the crack surfaces, and this fact is responsible for the nonlinear increase of the fracture toughness with the increase of the ionomer thickness.  相似文献   

16.
A diglycidyl ether of bisphenol-A (DGEBA) epoxy resin was modified with poly(ether ether ketone) with pendent methyl groups (PEEKM). PEEKM was synthesised from methyl hydroquinone and 4,4′-difluorobenzophenone and characterised. Blends of epoxy resin and PEEKM were prepared by melt blending. The blends were transparent in the uncured state and gave single composition dependent T g. The T g-composition behaviour of the uncured blends has been studied using Gordon–Taylor, Kelley–Bueche and Fox equations. The scanning electron micrographs of extracted fracture surfaces revealed that reaction induced phase separation occurred in the blends. Cocontinuous morphology was obtained in blends containing 15 phr PEEKM. Two glass transition peaks corresponding to epoxy rich and thermoplastic rich phases were observed in the dynamic mechanical spectrum of the blends. The crosslink density of the blends calculated from dynamic mechanical analysis was less than that of unmodified epoxy resin. The tensile strength, flexural strength and modulus were comparable to that of the unmodified epoxy resin. It was found from fracture toughness measurements that PEEKM is an effective toughener for DDS cured epoxy resin. Fifteen phr PEEKM having cocontinuous morphology exhibited maximum increase in fracture toughness. The increase in fracture toughness was due to crack path deflection, crack pinning, crack bridging by dispersed PEEKM and local plastic deformation of the matrix. The exceptional increase in fracture toughness of 15 phr blend was attributed to the cocontinuous morphology of the blend. Finally it was observed that the thermal stability of epoxy resin was not affected by the addition of PEEKM.  相似文献   

17.
A comparison was made between tensile (mode I) and shear (mode II) fracture characteristics in high strength aluminium alloys (7075-T6 and 6061-T651) using a relatively new mode II fracture specimen to evaluate the critical stress intensity factor. The enlarged plastic zone during mode II fracture required that an increased specimen thickness be used for determining K Hc under a purely plane strain condition. Plane stress conditions prevailed in the mode II fracture of 7075-T6 with a specimen thickness less than 10 mm, while plane strain controlled mode II fracture at a thickness of 10 mm or greater. Fractographic analysis revealed a distinctive difference in the micromechanisms responsible for crack extension. Small dimples were observed only on the mode II fracture surfaces, resulting from a microvoid nucleation fracture mechanism. The mode I fracture surfaces showed a mixed distribution of dimple sizes resulting from a void growth fracture mechanism. Comparing the critical stress intensity factors, the shear mode of failure exhibited a substantially higher value than the tensile mode, resulting from the effect of the sign and magnitude of the hydrostatic stress state on the microvoid nucleation event. Zero hydrostatic tension in the mode II loading configuration helps delay microvoid nucleation, increasing the apparent toughness. The high hydrostatic tension resulting from a mode I loading configuration enhances microvoid nucleation which promotes crack propagation at relatively lower stress intensity factors.  相似文献   

18.
Before a dry snow slab avalanche is released, a shear failure along a weak layer or an interface has to take place. This shear failure disconnects the overlaying slab from the weak layer. A better understanding of this fracture mechanical process, which is a key process in slab avalanche release, is essential for more accurate snow slope stability models. The purpose of this work was to design and to test an experimental set-up for a mode II fracture test with layered snow samples and to find a method to evaluate the interfacial fracture toughness or alternatively the energy release rate in mode II. Beam-shaped specimens were cut out of the layered snow cover, so that they consisted of two homogeneous snow layers separated by a well defined interface. In the cold laboratory 27 specimens were tested using a simple cantilever beam test. The test method proved to be applicable in the laboratory, although the handling of layered samples was delicate. An energy release rate for snow in mode II was calculated numerically with a finite element (FE) model and analytically using an approach for a deeply cracked cantilever beam. An analytical bilayer approach was not suitable. The critical energy release rate G c was found to be 0.04 ± 0.02 J m−2. It was primarily a material property of the weak layer and did not depend on the elastic properties of the two adjacent snow layers. The mixed mode interfacial fracture toughness for a shear fracture along a weak layer estimated from the critical energy release rate was substantially lower than the mode I fracture toughness found for snow of similar density.  相似文献   

19.
PA6/ABS共混物的脆-韧转变研究   总被引:1,自引:0,他引:1  
采用熔融共混方法制备了苯乙烯-马来酸酐共聚物(SMA)增容的PA6/ARS共混物,结合吴守恒的临界基体层厚度(IDc)理论,考察了基体层厚度与界面粘接对PA6/ABS共混物脆一韧转变的影响.结果表明,温度低于8℃,当ID减小时,冲击强度先缓慢增加,当ID<ID.时,共混物缺口冲击强度急剧增加;测试温度处于13℃~23℃...  相似文献   

20.
Fracture behaviour and morphology of PC/ABS blends   总被引:1,自引:0,他引:1  
The toughness behaviour of polycarbonate (PC)/acrylnitrile-butadiene-styrene (ABS) blends under dynamical loading (1 ms–1) based on the J-integral concept was studied. For this the multiple specimen R-curve method was used. A special experimental technique of a stop block method was developed. It was shown that the materials exhibit a very different toughness behaviour depending on temperature and ABS content. The reasons for this material behaviour are discussed with the help of scanning and transmission electron microscopical (SEM and TEM) investigation methods. It can be shown that a combination of fracture mechanics and electron microscopy allows a toughness optimization to be made on the basis of quantitative morphology-toughness correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号