首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

2.
G.  S.  M.  A.  G.   《Sensors and actuators. B, Chemical》2008,131(2):496-503
Copper phthalocyanine (CuPc) thin films have been deposited by glow discharge-induced sublimation (GDS). This physical technique allows to produce very high porosity films, whose response to gases is much more intense than evaporated films. It has been found that both electrical and optical properties of these films change upon gas exposure due to the gas/film interaction. Electrical response of the films has been tested by exposing the samples to NOx-containing atmospheres and by measuring the slope of the electrical surface current versus gas concentration. This way NO2 and NO concentrations down to 0.1 ppm and 10 ppm have been measured, respectively, with response times shorter than 2 min. Optical responses have been tested by measuring the change of light reflectance at a fixed wavelength upon exposure to ethanol-containing atmospheres down to concentrations of few thousands of ppm. Response times of less than 10 s have been obtained.  相似文献   

3.
Polypyrrole (PPy) films complexed with phenylalanine were successfully synthesized via one-step emulsion polymerization. By incorporating phenylalanine into the conductive PPy backbone, highly functionalized PPy films have been produced and found to respond to ammonia gas. The chemical sensors based on the PPy-phenylalanine nanoparticle films displayed enhanced reproducible and reversible responses upon exposure to NH3 gas. Their response was strongly dependent on the amount of the phenylalanine. The PPy-phenylalanine films were characterized by UV, IR, and XPS spectroscopy and compared to the PPy films. The gas detection and reversible response mechanism are discussed on the basis of these analysis results.  相似文献   

4.
在气体传感器中金属Pd被广泛用作的催化剂,利用直流溅射和浆料涂覆的方法制备出SnO2气敏元件,在氧气氛中通过直流溅射对SnO2元件进行Pd掺杂,并对用不同制备方法所得元件的电导、灵敏度等进行比较。结果表明:Pd掺杂降低了元件的电导,并使得电导峰出现的位置从460℃转移到260℃和180℃,这和样品的制备方法有关。Pd掺杂有利于提高SnO2元件的灵敏度,特别在低温区(100~250℃)对不同气体的灵敏度有几十倍提高。  相似文献   

5.
Tin oxide thick films were deposited by plasma spray physical vapor deposition at various oxygen flow rates and raw powder feeding rates. The films are fundamentally porous and the deposition rates reach 60 μm/min at highest under the present condition. Local structures are however modified with the deposition condition. For example, relatively uniform columnar structure formed at high oxygen flow rate, whereas granular grains were observed when no oxygen gas was introduced. In contrast, granulate films were deposited at high powder feeding rate while rather uniform columnar films formed at low feeding rate. The gas sensors fabricated with these PS-PVD films have exhibited high sensitivity against formaldehyde gas at concentration as low as 100 ppb, which characterizes the sensors prepared by the PS-PVD method. Such sensitivities are found to change with the film microstructures that are in turn controlled by the PS-PVD conditions.  相似文献   

6.
Active layers consisting of rf sputtered WO3 were deposited on microhotplate substrates. The films were doped with seven different materials (Pt, Au, Ag, Ti, SnO2, ZnO and ITO (indium tin oxide)). The eight types of sensors (including pure tungsten oxide ones) were tested in the presence of ammonia, hydrogen sulphide, nitrogen dioxide, carbon monoxide and methane. It was found that gold improved the sensitivity to H2S. On the other hand, doping with Ag and Pt led to higher responses to NO2 and NH3, respectively. No response to CH4 was observed. The sensitivity to CO was very low. The influence of the working temperature on the sensor response was also studied. Our study proves that selective gas detection is possible combining a few tungsten oxide sensors with different dopants.  相似文献   

7.
In this work, we study the influence of the introduction method of Pt atoms on the sensitivity to traces of ethanol of Pt-doped SnO2 sensors. The tin oxide films were obtained by a screen-printing process. Two different methods were employed to introduce Pt atoms on SnO2 films. In the first one, the Pt atoms were added to the screen-printed tin oxide layer by using RF magnetron sputtering and a subsequent thermal treatment. The second method consisted of mixing SnO2 and Pt pastes before the screen-printing process. The different active layers (including un-doped tin oxide) were carefully examined relative to their sensitivity to ethanol at different working temperatures. Sensors prepared by the second method showed sensitivity to ethanol four times higher than one of the sensors prepared by the first method and 12 times higher than un-doped sensors. XPS and scanning electron microscopy (SEM) measurements showed that this behaviour could be associated with the spatial distribution of the doping elements within the tin oxide film. While in Pt-sputtered sensors most of the Pt atoms were found at the surface of the active layer, for the sensors made by mixing Pt and SnO2 pastes, a homogeneous distribution of the Pt atoms was observed. These sensors show high sensitivity and fast response time to ethanol vapours, with a detection limit in the ppb range.  相似文献   

8.
A novel method for the evaluation of fast response of oxygen gas sensors in terms of milliseconds is developed. Using the method of modulating oxygen partial pressure by changing the total pressure inside the test chamber, the millisecond-order measurement was succeeded. For the 100 Hz sign-wave operation, the measurement system generated the pressure changes from 180 to 220 kPa, corresponding to the change of oxygen partial pressure from 36 to 44 kPa. Using both jump-method and pressure modulation method, the response of the resistive oxygen sensors of cerium oxide thick films were evaluated at 1173 K and the kinetic mechanism of gas sensing was discussed. Their response times of t90 obtained by square-wave change were measured to be 37 and 22 ms for high-to-low oxygen partial pressure and vice versa transition, respectively. The log–log plot of resistance of sensor and the frequency, pressure modulation spectra, was also evaluated at the same time and the kinetics of oxygen sensing was suggested to be diffusion-limited.  相似文献   

9.
It was discovered in the previous studies that the kinetic response of NO sensors based on copper tetra-tert-butyl phthalocyanine (CuTTBPc) Langmuir–Blodgett films (LB films) could be greatly improved if CuTTBPc mixed with arachidic acid (AA) in optimized molar ratios was used instead of the phthalocyanine derivative alone. In this paper we investigate the effects of the film thickness and the ionic content of the subphase on gas-sensitive properties of CuTTBPc:AA (1:1 molar ratio) LB films with respect to NO. It was shown that both the sensitivity and the kinetic response of the LB films were influenced by the Cd2+ addition into the subphase. These distinctions, being rather small for the thinnest films, became much more pronounced for thicker ones. If “pure” water was used as a subphase, experimental data could be explained mainly by the gas diffusion into the film bulk whereas the surface adsorption was a predominant process in the case of the Cd2+-containing subphase. Obtained results are discussed as regards the sensor performance optimization.  相似文献   

10.
M.L.  C.  M.  V.  J.T. Lpez  F.  J.A. 《Sensors and actuators. B, Chemical》2009,141(2):625-633
Highly reproducible optic and electrochemical sensors have been developed using organised films from a polar bithiophene derivative, the 5-(dimethylamino)-5′-nitro-2,2′-bithiophene (Me2N–T2–NO2). The strength of the molecular dipole moment of this push–pull end-capped bithiophene has permitted to obtain highly ordered, homogeneous and reproducible films by using both the Langmuir–Blodgett and the casting techniques. The organisation of the molecules in LB films and cast films has been established by means of UV–vis, infrared and Raman spectroscopy and by AFM.Me2N–T2–NO2 thin films possess appealing optical and electrochemical sensing capabilities. UV–vis spectra can be modified in the presence of a variety of volatile organic compounds and the sensitivity is related to the polarity of the gas analysed. Films can also be used as electrochemical sensors because the characteristics of the current/potential curves are sensitive to the nature of the electrolytic solution. The spectral changes accompanying the applied voltage could be used to produce ionochromic sensor electrodes.The structure of the films has an important impact in the sensing properties of the films and in their stability. The optical and electrochemical sensing properties of Langmuir–Blodgett films are more reproducible than those observed in cast films. This makes films prepared using the LB technique to be preferred as sensing devices. However the casting technique provides a fast method to obtain cheap and highly ordered sensors.  相似文献   

11.
ZnO nanorods are prepared by a hydrothermal process with cetyltrimethylammonium bromide (CTAB) and zinc powder at 182 °C. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated. The results indicate that the as-prepared ZnO nanorods show much better sensitivity and stability than the conventional materials. The PdO doping can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.  相似文献   

12.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

13.
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.  相似文献   

14.
The use of conjugated polymers in the gas and volatile organic compounds (VOCs) detections represents an advance in the development of the electronic noses. Polythiophenes show good thermal and environmental stability, are easily synthesized and they have been studied as gas and VOCs sensors using different principles or transduction techniques. Among these techniques, optical sensing has been attracted attention, mainly due to its versatility. However, conjugated polymer-based optical sensors are still less studied. This paper describes the use of two poly(3-alkylthiophenes) for VOCs optical detection. The sensing measurements were carried out using visible spectroscopy. Both polymers showed good sensitivity to the VOCs, showing fast and reversible responses with some hysteresis, and were unable to detect hydroxylated samples. Furthermore, it was demonstrated that the thickness of polymer films influences the intensity of the optical response. Although there is similarity in the superficial composition of the polymers films, demonstrated by their surface energies, they showed significant differences in their optical properties upon exposure to the VOCs.  相似文献   

15.
用真空气相沉积法在玻璃衬底上制备纯SnO2和掺稀土Nd的SnO2薄膜,在500℃氧气气氛条件下进行45min热处理,获得良好的纳米SnO2薄膜和掺稀土Nd的SnO2薄膜。结果显示掺Nd和热处理使纳米SnO2薄膜的结构、导电性能得到一定的改善。掺Nd5%的SnO2薄膜对气体的选择性和灵敏性均得到明显的改善,其中,对丁烷的选择性、灵敏度最好,在体积分数为7.2×10-3时,灵敏度可达到340,但对乙醇、丙酮气体的敏感性较差。  相似文献   

16.
ZnO and Sn doped ZnO (ZnO:Sn) thin films at various doping concentrations from 1 to 10 at.% were prepared by the sol-gel method for an ethanol sensing application. The Sn doping significantly influenced the film growth, grain size and response of the films. The XRD patterns showed that the hexagonal wurtzite structure of the ZnO film was retained even after the Sn doping. The crystallite grain sizes of the ZnO:Sn thin films at 0, 2 and 4 at.% were estimated by using the typical Scherrer's equation. The crystalline quality of the films at 6, 8 and 10 at.% of Sn was degenerated. Typical FESEM images demonstrated the different morphologies for the ZnO:Sn thin films at various Sn concentrations; many pores of various dimensions were observed depending on the doping level. A TEM analysis of the ZnO:Sn thin films at 0, 2 and 4 at.% was performed to verify the grain size. The optimum Sn doping level of ZnO:Sn thin film for ethanol sensing was estimated to be 4 at.%. The 4 at.% sample obtained the highest response to ethanol vapor in the 10-400 ppm level range at a low operating temperature of 250 °C. The sensing mechanism was explained by a variation in the sensitivity model from a neck-grain-boundary controlled sensitivity to a neck-controlled sensitivity. Our work demonstrates the ability to reduce the working temperature as well as to increase the response of ZnO thin film based gas sensors to detect ethanol, which would be of great merit for commercialized applications.  相似文献   

17.
The present study investigates the interaction of NO2 gas and μ-carbido-bridged iron phthalocyanine (PcFeCFePc) films obtained by Langmuir–Blodgett (LB) and spin-coating (SC) techniques. The phthalocyanine bridged dimer under study belongs to the polynuclear unsubstituted phthalocyanines class and presents poor solubility: in contrast the corresponding N-base bis-adducts are soluble enough in organic solvents to be deposited by Langmuir–Blodgett and spin-coating techniques. The reaction with NO2 is monitored by visible spectra variation that shows identical behaviour for both kinds of films, indicating that the chemical reaction between the gas and the films is independent of the deposition method. The electrical conductivity change as a function of time with NO2 is instead dissimilar: for spin-coated films it shows a behaviour already observed for sandwich-type phthalocyanine whereas for LB films it resembles that of monomeric phthalocyanine. Such a response implies that the charges (holes) generated in the oxidation/reduction process are carried differently through the material, and we attempt to explain this behaviour taking into account the two different structural and morphological features induced by the two techniques.  相似文献   

18.
Due to the demand for accurate, reliable and highly sensitive pH sensors, research is being pursued to find novel materials to achieve this goal. Semiconducting metal oxides, such as TiO, SnO and SnO2 and insulating oxides such as Nb2O5 and Bi2O3, and their mixtures in different proportions are being investigated for this purpose. The films of these materials mixtures are used in conjunction with an interdigitated electrode pattern to produce a conductimetric/capacitive pH sensor. The advantages of this approach include straightforward manufacturing, versatility and cost-effectiveness. It was noted that upon contact with a solution, the electrical parameters of the films, such as resistance etc., change. The correlation of these changes with pH values is the basis for the proposed system development. The ultimate goal is to find materials composition, which would have the highest sensitivity towards the pH level of the solutions. It was found that the materials that produced the highest sensitivity either had a long response time or were unstable over a wide pH range. Those exhibiting lower sensitivities were found to be more stable over a wide pH range. All oxide films tested demonstrated a change in electrical parameters upon contact with buffers of known pH value. This paper is submitted for the special issue of “Microsystem Technologies” and is an extended version of the paper 6589-55 presented at SPIE Smart Sensors, Actuators, and MEMS III conference.  相似文献   

19.
采用真空镀膜、溶液浸泡、灼烧热分解方法制备了掺系列碱土金属氧化物的SnO2敏感元件.在对乙醇等七种气体的测试结果表明,掺碱土金属氧化物的SnO2元件普遍提高了对乙醇的灵敏度和选择性,而对其余气体同未掺杂元件相似,几乎不敏感.实验结果还表明,碱土金属氧化物对元件的增敏作用按MgO、CaO、SrO、BaO的顺序依次减弱.在敏感机理方面,提出了流过元件电流的公式,对元件的敏感机理作了初步探讨.  相似文献   

20.
V.  S.  J.  I.  C.  E.  X. 《Sensors and actuators. B, Chemical》2009,140(2):356-362
Characteristics of WO3-based micro-machined sensors prepared using modified technologies of sensing layer deposition have been studied. The sensing films were deposited using two sputtering regimes. The first one included three interruptions of the deposition process. The second one comprised a deposition by using a floating regime that included three interruptions as well. In the first two interruptions the sputtering power was 100 W and in the last one the sputtering power was set to 280 W. Additionally to the operations of film deposition, annealing and lift-off processes were optimized. The micro-sensors showed high sensitivity and selectivity to oxidizing gases. The stability of the micro-sensors has been investigated as well. An explanation for the high sensitivity and selectivity of these new micro-sensors is presented in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号