首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,158(2):1405-1409
A series of Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 (0.15  x  0.3) cathode materials was prepared by citric acid-assisted, sol–gel process. Sub-micron sized particles were obtained and the X-ray diffraction (XRD) results showed that the crystal structure was similar to layered lithium transition metal oxides (R-3m space group). The electrochemical performance of the cathodes was evaluated over the voltage range 2.0–4.9 V at a current density of 7.947 mA g−1. The Li1.27Cr0.2Mn0.53O2 electrode delivered a high reversible capacity of up to 280 mAh g−1 during cycling. Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 yielded a promising cathode material.  相似文献   

2.
《Journal of power sources》2002,111(1):176-180
Iodine-containing, cation-deficient, lithium manganese oxides (ICCD-LMO) are prepared by reaction of MnO2 with LiI. The MnO2 is completely transformed into spinel-structured compounds with a nominal composition of Li1−δMn2−2δO4Ix. A sample prepared at 800 °C, viz. Li0.99Mn1.98O4I0.02, exhibits an initial discharge capacity of 113 mA h g−1 with good cycleability and rate capability in the 4-V region. Iodine-containing, lithium-rich lithium manganese oxides (ICLR-LMO) are also prepared by reaction of LiMn2O4 with LiI, which results in a nominal composition of Li1+xMn2−xO4Ix. Li1.01Mn1.99O4I0.02 shows a discharge capacity of 124 mA h g−1 on the first cycle and 119 mA h g−1 a on the 20th cycle. Both results indicate that a small amount of iodine species helps to maintain cycle performance.  相似文献   

3.
《Journal of power sources》2006,158(1):641-645
Stabilized lithium nickelate is receiving increased attention as a low-cost alternative to the LiCoO2 cathode now used in rechargeable lithium batteries. Layered LiNi1−xyMxMyO2 samples (Mx = Al3+ and My = Mg2+, where x = 0.05, 0.10 and y = 0.02, 0.05) are prepared by the refluxing method using acetic acid at 750 °C under an oxygen stream, and are subsequently subjected to powder X-ray diffraction analysis and coin-cell tests. The co-doped LiNi1−xyAlxMgyO2 samples show good structural stability and electrochemical performance. The LiNiAl0.05Mg0.05O2, cathode material exhibits a reversible capacity of 180 mA h g−1 after extended cycling. These results suggest that the threshold concentration for aluminum and magnesium substitution is of the order of 5%. The co-substitution of magnesium and aluminium into lithium nickelate is considered to yield a promising cathode material.  相似文献   

4.
《Journal of power sources》2001,92(1-2):221-227
The electrochemical insertion of lithium in the ramsdellite polymorph of titanium dioxide, TiO2 (R), is studied by electrochemical methods. At room temperature the maximal Li uptake under constant current densities of 0.1, 0.5 and 1.0 mA cm−2 is 0.85, 0.8 and 0.7 Li/Ti, respectively. Between 2.3 and 1.3 V versus lithium, the specific capacity achieved is as high as 285 A h kg−1 at 0.5 mA cm−2. This corresponds to 85% of the maximum theoretical capacity (336 A h kg−1), which may be reached by incorporation of one lithium per titanium under equilibrium conditions.  相似文献   

5.
《Journal of power sources》2006,162(2):1312-1321
Lithium insertion and extraction in to/from the oxyfluorides TiOF2 and NbO2F is investigated by galvanostatic cycling, cyclic voltammetry and impedance spectroscopy in cells using Li-metal as a counter electrode at ambient temperature. The host compounds are prepared by low-temperature reaction and characterized by powder X-ray diffraction (XRD), Rietveld refinement and Brunauer, Emmett and Teller (BET) surface area. Crystal structure destruction occurs during the first-discharge reaction with Li at voltages below 0.8–0.9 V for LixTiOF2 as shown by ex situ XRD and at ≤1.4 V for LixNbO2F to form amorphous composites, ‘LixTi/NbOy–LiF’. Galvanostatic discharge–charge cycling of ‘LixTiOy’ in the range 0.005–3.0 V at a current density of 65 mA g−1 gives a capacity of 400 (±5) mAh g−1 during 5–100 cycles with no noticeable capacity fading. This value corresponds to 1.52 mol of recycleable Li/Ti. The coulombic efficiency (η) is >98%. Results on ‘LixNbOy’ show good reversibility of the electrode and a η >98% is achieved only after 10 cycles (range 0.005–3.0 V and at 30 mA g−1) and a capacity of 180 (±5) mAh g−1 (0.97 mol of Li/Nb) was stable up to 40 cycles. In both ‘LixTiOy’ and ‘LixNbOy’, the average discharge and charge voltages are 1.2–1.4 and 1.7–1.8 V, respectively. The impedance spectral data measured during the first cycle and after selected numbers of cycles are fitted to an equivalent circuit and the roles played by the relevant parameters as a function of cycle number are discussed.  相似文献   

6.
《Journal of power sources》2006,162(2):1367-1372
The layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Mox]O2 cathode materials (x = 0, 0.005, 0.01, and 0.02) were prepared by a solid-state pyrolysis method (700, 800, 850, and 900 °C). Its structure and electrochemical properties were characterized by XRD, SEM, XPS, cyclic voltammetry, and charge/discharge tests. It can be learned that the doped sample of x = 0.01 calcined at 800 °C shows the highest first discharge capacity of 221.6 mAh g−1 at a current density of 20 mA g−1 in the voltage range of 2.3–4.6 V, and the Mo-doped samples exhibit higher discharge capacity and better cycle-ability than the undoped one at room temperature.  相似文献   

7.
《Journal of power sources》2006,161(1):606-611
LiNi1−xTixO2 (0  x  0.1) compounds have been synthesized by a direct molten-salt method that uses a eutectic mixture of LiNO3 and LiOH salts. According to X-ray diffraction analysis, these materials have a well-developed layered structure (R3-m) and are an isostructure of LiNiO2. The LiNi1−xTixO2 (0  x  0.1) compounds have average particle sizes of 1–5 μm depending on the amount of Ti salt. Charge–discharge tests show that a LiNi1−xTixO2 (0  x  0.1) cathode prepared at 700 °C has an initial discharge capacity as high as 171 mA h g−1 and excellent capacity retention in the range 4.3–2.8 V at a current density of 0.2 mA cm−2.  相似文献   

8.
《Journal of power sources》2006,158(1):608-613
A new technique was employed to synthesize spinel LiMn2O4 cathode materials by adding cellulose and citric acid to an aqueous solution of lithium and manganese salts. Various synthesis conditions such as the calcination temperature and the citric acid-to-metal ion molar ratio (R) were investigated to determine the ideal conditions for preparing LiMn2O4 with the best electrochemical characteristics. The optimal synthesis conditions were found to be R = 1/3 and a calcination temperature of 800 °C. The initial discharge capacity of the material synthesized using the optimal conditions was 134 mAh g−1, and the discharge capacity after 40 cycles was 125 mAh g−1, at a current density of 0.15 mA cm−2 between 3.0 and 4.35 V. Details of how the initial synthesis conditions affected the capacity and cycling performance of LiMn2O4 are discussed.  相似文献   

9.
《Journal of power sources》2006,159(1):336-339
Polycrystalline samples of NbSb2 have been synthesized and studied as anode material for lithium-ion batteries. The reaction mechanism of lithium with NbSb2 is investigated by ex situ XRD and cyclic voltammogram studies. Li3Sb and Nb are formed during first discharge and during charge lithium is extracted from Li3Sb. The first cycle discharge capacity is 420 mA hg−1 and first cycle charge capacity is 315 mA hg−1.  相似文献   

10.
《Journal of power sources》2006,162(2):841-846
Small spiral-wound lithium–carbon monofluoride (Li/CFx) cells, which were discharged at the C/40 rate, had a nominal capacity of 300 mAh and a gravimetric energy density of about 464 Wh kg−1. These cells delivered pulse current loads (>22 mA) with good capacity (>200 mAh) if they were subjected to a pre-discharge step. A 17 V, 2.2 kW battery based on Li/CFx flat cell technology has also been fabricated and tested. The battery had gravimetric and volumetric energy densities of 360 Wh kg−1 and 700 Wh dm−3, respectively. This compares with a value of 330 Wh kg−1 and 522 Wh dm−3 for an equivalent battery based on Li/SOCl2.  相似文献   

11.
In this paper we introduce a lithium/sulfur–oxygen (Li/S–O2) hybrid cell that is able to operate either in an air or in an environment without air. In the cell, the cathode is a sulfur–carbon composite electrode containing appropriate amount of sulfur. In the air, the cathode first functions as an air electrode that catalyzes the reduction of oxygen into lithium peroxide (Li2O2). Upon the end of oxygen reduction, sulfur starts to discharge like a normal Li/S cell. In the absence of oxygen or air, sulfur alone serves as the active cathode material. That is, sulfur is first reduced to form a soluble polysulfide (Li2Sx, x  4) that subsequently discharges into Li2S through a series of disproportionations and reductions. In general, the Li/S–O2 hybrid cell presents two distinct discharge voltage plateaus, i.e., one at ~2.7 V attributing to the reduction of oxygen and the other one at ~2.3 V attributing to the reduction of sulfur. Since the final discharge products of oxygen and sulfur are insoluble in the organic electrolyte, it is shown that the overall specific capacity of Li/S–O2 hybrid cell is determined by the carbon composite electrode, and that the specific capacity varies with the discharge current rate and electrode composition. In this work, we show that a composite electrode composed by weight of 70% M-30 activated carbon, 22% sulfur and 8% polytetrafluoroethylene (PTFE) has a specific capacity of 857 mAh g?1 vs. M-30 activated carbon at 0.2 mA cm?2 in comparison with 650 mAh g?1 of the control electrode consisting of 92% M-30 and 8% PTFE. In addition, the self-discharge of the Li/S–O2 hybrid cell is expected to be substantially lower when compared with the Li/S cell since oxygen can easily oxidize the soluble polysulfide into insoluble sulfur.  相似文献   

12.
《Journal of power sources》2006,159(1):249-253
The chemical and structural stabilities of various layered Li1−xNi1−yzMnyCozO2 cathodes are compared by characterizing the samples obtained by chemically extracting lithium from the parent Li1−xNi1−yzMnyCozO2 with NO2BF4 in an acetonitrile medium. The nickel- and manganese-rich compositions such as Li1−xNi1/3Mn1/3Co1/3O2 and Li1−xNi0.5Mn0.5O2 exhibit better chemical stability than the LiCoO2 cathode. While the chemically delithiated Li1−xCoO2 tends to form a P3 type phase for (1  x) < 0.5, Li1−xNi0.5Mn0.5O2 maintains the original O3 type phase for the entire 0  (1  x)  1 and Li1−xNi1/3Mn1/3Co1/3O2 forms an O1 type phase for (1  x) < 0.23. The variations in the type of phases formed are explained on the basis of the differences in the chemical lithium extraction rate caused by the differences in the degree of cation disorder and electrostatic repulsions. Additionally, the observed rate capability of the Li1−xNi1−yzMnyCozO2 cathodes bears a clear relationship to cation disorder and lithium extraction rate.  相似文献   

13.
《Journal of power sources》2001,92(1-2):95-101
Lithium cobalt oxide powders have been successfully prepared by a molten-salt synthesis (MSS) method using a eutectic mixture of LiCl and Li2CO3 salts. The physico-chemical properties of the lithium cobalt oxide powders are investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), particle-size analysis and charge–discharge cycling. A lower temperature and a shorter time (∼700°C and 1 h) in the Li:Co=7 system are sufficient to prepare single-phase HT-LiCoO2 powders by the MSS method, compared with the solid-state reaction method. Charge–discharge tests show that the lithium cobalt oxide prepared at 800°C has an initial discharge capacity as high as 140 mA h g−1, and 100 mA h g−1 after 40 cycles. The dependence of the synthetic conditions of HT-LiCoO2 on the reaction temperature, time and amount of flux with respect to starting oxides is extensively investigated.  相似文献   

14.
《Journal of power sources》2006,156(2):560-566
The cycle behaviour and rate performance of solid-state Li/LiFePO4 polymer electrolyte batteries incorporating the N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI) room temperature ionic liquid (IL) into the P(EO)20LiTFSI electrolyte and the cathode have been investigated at 40 °C. The ionic conductivity of the P(EO)20LiTFSI + PYR13TFSI polymer electrolyte was about 6 × 10−4 S cm−1 at 40 °C for a PYR13+/Li+ mole ratio of 1.73. Li/LiFePO4 batteries retained about 86% of their initial discharge capacity (127 mAh g−1) after 240 continuous cycles and showed excellent reversible cyclability with a capacity fade lower than 0.06% per cycle over about 500 cycles at various current densities. In addition, the Li/LiFePO4 batteries exhibited some discharge capability at high currents up to 1.52 mA cm−2 (2 C) at 40 °C which is very significant for a lithium metal-polymer electrolyte (solvent-free) battery systems. The addition of the IL to lithium metal-polymer electrolyte batteries has resulted in a very promising improvement in performance at moderate temperatures.  相似文献   

15.
《Journal of power sources》2002,112(2):634-638
Layered Li[Li(1−2x)/3NixMn(2−x)/3]O2 materials with x=0.41, 0.35, 0.275 and 0.2 are synthesized by means of a sol–gel method. The layered structure is stabilized by a solid solution between LiNiO2 and Li2MnO3. The discharge capacity increases with increasing lithium content at the 3a sites in the Li[Li(1−2x)/3NixMn(2−x)/3]O2. A Li[Li0.2Ni0.2Mn0.6]O2 electrode delivers discharge capacities of 200 and 240 mAh g−1 with excellent cycleability at 30 and 55 °C, respectively.  相似文献   

16.
《Journal of power sources》2006,159(2):1328-1333
Spherical Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.8Co0.2−xMnx](OH)2 and LiOH·H2O precursors. The structure, morphology, electrochemical properties, and thermal stability of Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) were studied. The average particle size of the powders was about 10–15 μm and the size distribution was narrow due to the homogeneity of the metal hydroxide [Ni0.8Co0.2−xMnx](OH)2 (x = 0, 0.1). The Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) delivered a discharge capacity of 197–202 mAh g−1 and showed excellent cycling performance. Compared to Li[Ni0.8Co0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2 exhibited greater thermal stability resulting from improved structural stability due to Mn substitution.  相似文献   

17.
《Journal of power sources》2006,161(1):601-605
The uniform layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)(OH)2 synthesized by a liquid phase co-precipitation method as precursor. The effects of calcination temperature and time on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 were systemically studied. XRD results revealed that the optimal prepared conditions of the layered Li[Ni1/3Co1/3Mn1/3]O2 were 850 °C for 18 h. Electrochemical measurement showed that the sample prepared under the above conditions has the highest initial discharge capacity of 162.1 mAh g−1 and the smallest irreversible capacity loss of 9.2% as well as stable cycling performance at a constant current density of 16 mA g−1 between 3 and 4.3 V versus Li at room temperature.  相似文献   

18.
《Journal of power sources》2001,92(1-2):35-39
Electrochemical and thermal properties of LiNi0.74Co0.26O2 cathode material with 5, 13 and 25 μm-sized particles have been studied by using a coin-type half-cell Li/LiNi0.74Co0.26O2. The specific capacity of the material ranges from 205 to 210 mA h g−1, depending on the particle size or the Brunauer, Emmett and Teller (BET) surface area. Among the particle sizes, the cathode with a particle size of 13 μm shows the highest specific capacity. Even though the material with a particle size of 5 μm exhibits the smallest capacity value of 205 mA h g−1, no capacity fading was observed after 70 cycles between 4.3 and 2.75 V at the 1 C rate. Differential scanning calorimetry (DSC) studies of the charged electrode at 4.3 V show a close relationship between particle size (BET surface area) and thermal stability of the electrode, namely, a larger particle size (smaller BET surface area) leads to a better thermal stability of the LiNi0.74Co0.26O2 cathode.  相似文献   

19.
《Journal of power sources》2006,154(1):290-297
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5  x(Al0.5Mo0.5)x (x = 0–0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)2Ni9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)2Ni9 phase and the LaNi5 phase increases with increasing Al and Mo content in the alloys. The PC isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (x = 0) to 397.6 mAh g−1 (x = 0.6) and then decreases to 370.4 mAh g−1 (x = 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x = 0) to 73.8% (x = 0.8) at the discharge current density of 1200 mA g−1. Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x. The hydrogen diffusion coefficient in the alloy bulk increases with increasing Al and Mo content and thus enhances the low-temperature dischargeability of the alloy electrode.  相似文献   

20.
《Journal of power sources》2004,133(2):268-271
Following the route of synthesis of β-MoO3 through soft chemistry methods a new amorphous material with composition MoO3·2H2O has been detected. The hydrated molybdenum oxide showed the capacity for electrochemical lithium insertion. The maximum amount of lithium incorporated in this material (∼3.3 Li/Mo) leads to a specific capacity of 490 Ah kg−1. The charge–discharge curve showed a good reversibility in the potential range from 3.2 to 1.1 V versus Li+/Li0 where the cell voltage decreased monotonously as a function of the degree of lithium inserted. The electrochemical features of amorphous MoO3·2H2O suggest that it can be considered as a possible cathode candidate in rechargeable lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号