首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influence of calcium ions and chelating agents on the thermal stability of model nutritional beverages was examined. Oil-in-water emulsions (6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 0–10 mM CaCl2, and 0–40 mM EDTA or citrate, pH 7.0) were stored at temperatures between 30 and 120 °C for 15 min. The particle size, particle charge, creaming stability, rheology, and free-calcium concentration of the emulsions were then measured. In the absence of chelating agents, appreciable droplet aggregation occurred in emulsions held at temperatures from 80 to 120 °C, which led to increased emulsion particle diameter, shear-thinning behavior, apparent viscosity, and creaming instability. Addition of chelating agents to the emulsions prior to heating decreased, but did not prevent, droplet aggregation in the emulsions. EDTA was more effective than citrate in decreasing droplet aggregation. Heat treatment increased the amount of chelating agents required to prevent droplet aggregation in the emulsions. Free-calcium concentration and droplet surface potential was independent of heat-treatment temperature, indicating that the performance of the chelating agents in binding calcium ions was not affected by the heat treatment. It was suggested that increased hydrophobic attractive interactions between the droplets occurred during heating, which induced droplet aggregation.  相似文献   

3.
The objective of this research was to evaluate the influence of storage pH (3 and 7) and biopolymer emulsifier type (Whey protein isolate (WPI), Modified starch (MS) and Gum arabic (GA)) on the physical and oxidative stability of rice bran oil-in-water emulsions. All three emulsifiers formed small emulsion droplets (d32 < 0.5 μm) when used at sufficiently high levels: 0.45%, 1% and 10% for WPI, MS and GA, respectively. The droplets were relatively stable to droplet growth throughout storage (d32 < 0.6 μm after 20 days), although there was some evidence of droplet aggregation particularly in the MS-stabilized emulsions. The electrical charge on the biopolymer-coated lipid droplets depended on pH and biopolymer type: −13 and −27 mV at pH 3 and 7 for GA; −2 and −3 mV at pH 3 and 7 for MS; +37 and −38 mV at pH 3 and 7 for WPI. The oxidative stability of the emulsions was monitored by measuring peroxide (primary products) and hexanal (secondary products) formation during storage at 37 °C, for up to 20 days, in the presence of a pro-oxidant (iron/EDTA). Rice bran oil emulsions containing MS- and WPI-coated lipid droplets were relatively stable to lipid oxidation, but those containing GA-coated droplets were highly unstable to oxidation at both pH 3 and 7. The results are interpreted in terms of the impact of the electrical characteristics of the biopolymers on the ability of cationic iron ions to interact with emulsified lipids. These results have important implications for utilizing rice bran oil, and other oxidatively unstable oils, in commercial food and beverage products.  相似文献   

4.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

5.
Starch hydrophobically modified with octenyl succinic anhydride (OSA starch) has strong surface activity and capability to modify viscosity of continuous phase. The influences of OSA starch, used as emulsifier, on stability, disperse and rheological properties of oil-in-water emulsions were examined in this work. The oil content in emulsions varied from 5 to 60% and OSA starch concentrations were 8, 10, 12, 14 and 16% expressed relative to the water mass.  相似文献   

6.
The influence of emulsifier type (Tween 20, whey protein isolate, casein) on the physical properties of 20 wt% hydrogenated palm oil-in-water emulsions after crystallization of (i) the oil phase only or (ii) both the oil and water phases has been examined. Emulsion stability was assessed by differential scanning calorimetry measurements of fat destabilization after cool–heat cycles, and by measurements of mean particle size, oiling off, and gravitational separation after isothermal storage (−20 to 37 °C). Tween 20-stabilized emulsions showed appreciable fat destabilization at temperatures where the oil phase was partially crystalline, which was attributed to partial coalescence. Protein-stabilized emulsions were stable under these conditions, which was mainly attributed to the relatively thick interfacial membranes surrounding the droplets. When both oil and water phases crystallized, there was complete destabilization of Tween 20- and casein-stabilized emulsions, and extensive destabilization of whey protein-stabilized emulsions, which was attributed to ice crystallization. The results of this study could facilitate the development of frozen food products with improved properties.  相似文献   

7.
The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 °C. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancidity, with significant reductions in concentration of total volatiles, peroxide value (PV) and p-anisidine value (PA) for both emulsion types. The synergistic increase in stability of the OW and WO emulsions containing BSA and caffeic acid was 102.9% and 50.4% respectively based on total oxidation (TOTOX) values, which are calculated as 2PV + PA, with greater synergy calculated if based on formation of headspace volatiles. The OW emulsion was more susceptible to the development of headspace volatiles by oxidation than the WO emulsion, even though the degree of oxidation assessed by the TOTOX value was similar.  相似文献   

8.
Oil in water emulsions (40 wt%) were prepared from a homologous series of n-alkanes (C10–C18). The samples were temperature cycled in a differential scanning calorimeter (two cycles of 40 °C to −50 °C to 40 °C at 5 °C min−1) and in bulk (to −20 °C). The emulsions destabilized and phase-separated after freeze–thaw if the droplets were solid at the same time as the continuous phase and were more unstable if a small molecule (SDS or polyoxyethylene sorbitan monolaurate) rather than a protein (whey protein isolate or sodium caseinate) emulsifier was used. The unstable emulsions formed a self-supporting cryo-gel that persisted between the melting of the water and the melting of the hydrocarbon phase. Microscopy provides further evidence of a hydrocarbon continuous network formed during freezing by a mechanism related to partial coalescence which collapses during lipid melting to allow phase separation.  相似文献   

9.
The influence of chitosan concentration (0–0.3 wt%) and molecular weight (120, 250 and 342.5 kDa) on the physical stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions was studied. The ζ-potential, droplet size, creaming stability, free fatty acids and glucosamine released was measured for the emulsions when they were subjected to an in vitro digestion model. The ζ-potential of the oil droplets in lecithin-chitosan stabilized emulsions changed from positive (≈+53 mV) to negative and the emulsions were unstable to droplet aggregation for all chitosan concentrations and molecular weights used after being subjected to the digestion model. The amount of free fatty acid and glucosamine released per unit amount of emulsion was higher when pancreatic lipase was included in the digestion model. These results suggest that lecithin-chitosan coated droplets can be degraded by lipase under simulated gastrointestinal conditions. Consequently, chitosan coated lipid droplets may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals.  相似文献   

10.
11.
ABSTRACT:  The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.  相似文献   

12.
An influence of low molecular weight (LMW) chitosan on physicochemical properties and stability of low-acid (pH 6) tuna oil-in-water emulsion stabilized by non-ionic surfactant (Tween 80) was studied. The mean droplet diameter, droplet charge (ζ-potential), creaming stability and microstructure of emulsions (5 wt% oil) were evaluated. The added chitosan was adsorbed on the surface of oil droplets stabilized by Tween 80 through electrostatic interactions. Such addition of chitosan at different concentrations (0–10 wt%) to emulsions showed slight effect on the mean droplet diameter. However, the degree of flocculation was a function of chitosan concentration assessed by emulsions' microstructure and creaming index. The impact of chitosan on the strength of the colloidal interaction between the emulsion droplets increased with increasing chitosan concentration. The mean diameter of droplet in emulsions increased with increasing NaCl because of the electrostatic screening effect. The addition of LMW chitosan could be performed to create tuna oil emulsions with low-acid to neutral character, as well as various physicochemical and stability properties suitable for health food products.  相似文献   

13.
The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, −5 and −10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion.  相似文献   

14.
Effects of chlorophyll photosensitisation on the oxidative stability of oil-in-water (O/W) emulsions were determined by analysing headspace oxygen content, lipid hydroperoxides, and headspace volatiles. The roles of transition metals and singlet oxygen were tested by adding ethylenediaminetetraacetic acid (EDTA) and sodium azide, respectively. Emulsions with chlorophylls and visible light irradiation had significantly high lipid hydroperoxides and headspace volatiles and low headspace oxygen content (p < 0.05) after 32 h while samples without light irradiation did not show any significant changes (p > 0.05). Sodium azide did not show clear antioxidant capacities in O/W emulsion systems rather showed prooxidant properties at some concentration. Addition of EDTA, a metal chelator, accelerated the rates of lipid oxidation in a concentration dependent manner. EDTA may enhance the stability of chlorophylls in O/W emulsions and the resulting higher chlorophyll concentrations may generate more singlet oxygen thus accelerating the rates of lipid oxidation.  相似文献   

15.
The influence of neutral cosolvents (polyols) on the stability of hydrocarbon oil-in-water emulsions stabilized by a globular protein was investigated. Glycerol (0–40 wt%) and sorbitol (0–35 wt%) were added to n-hexadecane oil-in-water emulsions stabilized by β-lactoglobulin (β-lg, pH 7.0, 150 mM NaCl), either before or after incubation at 30 °C for 24 h. The stability of the emulsions to flocculation and creaming improved when neutral cosolvents were added, with the effectiveness of the cosolvents depending on their type, concentration and time of addition. Emulsion stability was better for sorbitol than glycerol, improved with increasing cosolvent concentration, and was better when the cosolvents were added immediately after homogenization than when they were added 24 h later. The influence of the cosolvents on emulsion stability is interpreted in terms of their effect on the conformation and interactions of the adsorbed proteins, as well as on the droplet–droplet collision frequency. This study has implications for the development of protein stabilized oil-in-water emulsions for utilization in industrial products.  相似文献   

16.
本实验主要研究了加热预处理(90℃,5 min)对乳清分离蛋白作为稳定剂所制备的菜籽油水包油型乳状液的特性和物理稳定性的影响。测定了乳状液在储藏期间的ζ-电势、粒径、絮凝指数、分层指数、流变特性和乳状液中蛋白质分配系数的变化趋势。研究结果表明,与天然乳清分离蛋白相比,经过预热处理的乳清分离蛋白能够显著降低乳状液在整个储藏期间(014 d)的物理稳定性(p<0.05),具体表现为较低的ζ-电势(p<0.05),以及较高的粒径、絮凝指数、分层指数和粘度(p<0.05)。与此同时,加热处理导致的乳清分离蛋白变性和聚集,能够显著增加其在乳状液界面蛋白膜表面的分布(p<0.05),从而验证了上述乳状液物理稳定性的结果。上述结果表明,加热预处理显著降低了整个乳状液在储藏期间的物理稳定性,为乳清分离蛋白在乳状液中的合理应用奠定了理论基础。   相似文献   

17.
The influence of pH and CaCl2 on the physical stability of dilute oil-in-water emulsions stabilized by whey protein isolate has been studied. The particle size, zeta potential and creaming stability of 0.05 wt% soy bean oil-in-water emulsions (d ≈ 0.53 μm) were measured with varying pH (3 to 7) and CaCl2 concentration (0 to 20 μM). In the absence of CaCl2 extensive droplet aggregation occurred around the isoelectric point of the whey proteins (4 < pH < 6) because of their low electrical charge, which led to creaming instability. Droplet aggregation occurred at higher pH when CaCl2 was added to the emulsions. The minimum concentration of CaCl2 required to promote aggregation increased as the pH increased. Aggregation was induced in the presence of CaCl2 probably because of the reduction in electrostatic repulsion between droplets, caused by binding of counter ions to droplet surfaces and electrostatic screening effects.  相似文献   

18.
A sodium caseinate (NaCN)–maltodextrin (Md100) conjugate was prepared by a Maillard-type reaction by dry heat treatment of a NaCN–Md100 mixture at 60 °C and 79% relative humidity for 4 days. Conjugation resulted in a 35.7% loss of available amino groups in the NaCN and a 25.9% loss of available reducing groups in the Md100. The crude conjugate was purified by batch anion exchange chromatography to remove non-conjugated Md100. Purification reduced the available reducing groups in the conjugate from 74.1% to 23.7% and increased the protein content from 45.6% to 83.9%. The emulsifying properties of the conjugates were assessed in oil-in-water (o/w) emulsions; crude and purified conjugate stabilised emulsions had improved storage stability and freeze–thaw stability when compared to NaCN stabilised emulsions. Purified conjugate stabilised emulsions had better thermal stability than NaCN, NaCN–Md mixture and non-purified conjugate stabilised emulsions. These results indicate a potential for these NaCN–Md conjugates as speciality functional food ingredients.  相似文献   

19.
In the present study, the interactions between negatively charged sodium stearoyl 2-lactylate (SSL) and positively charged chitosan were studied in solution and on oil-water interfaces. Phase diagrams of the SSL/chitosan systems were obtained at both pH 4.0 and 5.7 by preparing concentrated solutions and mixing them at different ratios. Optical microscopy revealed that the complexes formed at pH=4.0 were smaller than those formed at pH=5.7 and that the size of the complexes decreased as the SSL/chitosan ratio was reduced. Emulsions (10% w/w oil) were prepared at pH=5.7 by using the complexes of a constant SSL concentration (0.4% w/w) and at different SSL/chitosan weight ratios. The droplet size of the emulsions that were formed with the complexes was greater than those containing only SSL. Using complexes of low SSL/chitosan ratio as emulsifying agent resulted in the production of emulsions with enhanced viscosity as determined by steady shear rheometry. However, none of the samples showed a gel-like behaviour since in all cases the G’ (storage modulus) was lower that G” (loss modulus). The presence of polysaccharide at the interface resulted in an increased stability of the emulsions subjected to environmental stresses, such as heat treatment and a freeze thawing process.  相似文献   

20.
The influence of added xanthan gum on rheological and dispersion characteristics and stability of concentrated (50% w/w) corn oil-in-water emulsions, stabilized with 5% (percentage on oil amount) polyoxyethylene (20) sorbitan monooleate (Tween 80), have been investigated. Emulsion with no xanthan indicated coalescence and poor creaming stability. All emulsions, with and without xanthan, showed shear-thinning flow behavior. Addition of xanthan protected emulsions from coalescence during 15 days of storage. Increase in xanthan concentration led to decrease in droplet average radius and creaming index, and increase in elastic properties of emulsions. Decrease in the emulsions flow behavior indexes, which suggested the extent of non-Newtonian behavior of emulsions, was influenced by increase in xanthan concentration. Above 0.04% of xanthan concentration, G′ and G″ values indicated formation of weak gels. Gel structure existence arises from droplet network association, due to depletion flocculation. Standard deviation of emulsions droplet size mean diameter decreased while concentration of added xanthan increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号