首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanocrystalline (NC) Ti494Ni50:6 alloy with a different mean grain size in a range of 20–100 nm has been successfully produced using severe plastic deformation by high pressure torsion and further annealing at various temperatures. The features of microstructure and martensitic transformation of the NC TiNi have been studied. During tensile tests the effects of the grain size on mechanical properties at room and elevated temperatures are studied and discussed. The NC TiNi exhibits an unusual increased strength but low ductility at room temperature. However, it demonstrates enhanced strength and ductility at higher temperatures.  相似文献   

2.
电弧堆焊铁基非晶/纳米晶复合涂层的组织及性能研究   总被引:2,自引:0,他引:2  
以铁基非晶合金Fe41Co7Cr15Mo14C15B6Y2作为焊芯制备低氢型非晶堆焊焊条,利用手工电弧堆焊,调控堆焊工艺参数,在Q235钢上制备两种不同非晶/纳米晶组分的复合堆焊层。利用XRD/SEM/TEM探索不同堆焊工艺下的结构组织演变及非晶/纳米晶的组成比例变化,研究了不同比例非晶/纳米晶复合堆焊层的晶化特征、硬度和耐磨性变化。实验结果表明,堆焊层为铁基非晶/纳米晶复合涂层,与基体达到了良好的冶金结合;涂层中非晶相含量最高可达47.44%,纳米晶粒尺寸为10~48 nm,堆焊层的最高硬度达1 226HV1,其耐磨性可达Q235钢的8倍;两组堆焊层的晶化激活能分别为Ex(150 A)=107.476 kJ/mol,Ex(160A)=58.104 kJ/mol;随着堆焊热输入的增加,堆焊层中非晶相的含量降低,纳米晶粒尺寸增大,堆焊层的晶化温度、热稳定性、硬度和耐磨性有所降低。  相似文献   

3.
Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.  相似文献   

4.
The strain response of an electrochemically deposited nanocrystalline Ni-20 wt.% Fe alloy processed by high-pressure torsion (HPT) was investigated by monitoring changes in hardness. Strain hardening was observed in the very early stage of HPT, followed by strain softening before the onset of a second strain hardening stage. Structural investigations revealed that the two hardening stages were associated with an increase in dislocation density, whereas the strain softening stage was accompanied by a reduction in the dislocation and twin densities, thereby demonstrating the main dependence of hardness on the dislocation density in this material. Grain growth occurred during HPT and its role in the hardness evolution is also discussed.  相似文献   

5.
Valiev R 《Nature materials》2004,3(8):511-516
Despite rosy prospects, the use of nanostructured metals and alloys as advanced structural and functional materials has remained controversial until recently. Only in recent years has a breakthrough been outlined in this area, associated both with development of new routes for the fabrication of bulk nanostructured materials and with investigation of the fundamental mechanisms that lead to the new properties of these materials. Although a deep understanding of these mechanisms is still a topic of basic research, pilot commercial products for medicine and microdevices are coming within reach of the market. This progress article discusses new concepts and principles of using severe plastic deformation (SPD) to fabricate bulk nanostructured metals with advanced properties. Special emphasis is laid on the relationship between microstructural features and properties, as well as the first applications of SPD-produced nanomaterials.  相似文献   

6.
Processing by severe plastic deformation (SPD) has been developed extensively over the last two decades in order to produce ultrafine-grained (UFG) materials having submicrometre or nanometre grain sizes. An important material property for UFG materials is good wear resistance so that they may be used in a range of structural applications. An examination of the published data shows that only limited reports are available to date on the wear behaviour of SPD-processed materials and, furthermore, many of these results appear to be conflicting. The correlation of hardness and wear is limited because the wear property is a system property that in practice is influenced by a range of factors. Accordingly, this review is designed to examine recent reports related to the wear resistance of materials processed by SPD with particular emphasis on alloys processed using equal-channel angular pressing (ECAP), high-pressure torsion (HPT) and accumulative roll-bonding (ARB).  相似文献   

7.
The peculiarities of nanocrystalline (NC) structure formation in germanium subjected to severe plastic deformation (SPD) are examined in this paper. Transmission electron microscopy (TEM), X-ray analysis and differential scanning calorimetry were employed in the structural study of germanium specimens. The crystal-to-amorphous transition induced by SPD in germanium is observed. The NC structure formation is the result of annealing at 850°C. Crystallites in the NC state have non-equilibrium grain boundaries (GB) and a particular “spread” diffraction contrast, observed by TEM, testifies to this.  相似文献   

8.
为了研究变形程度对强变形Al-4%Cu合金退火行为的影响,通过透射电镜观察和拉伸试验,研究了人工时效Al-4%Cu合金经过不同变形量的多向压缩变形(MAC),退火(120℃/60 min)后的显微组织和力学性能.研究表明:试样中的第二相在MAC过程中破碎溶回基体后,会在后续退火过程中再次析出,且析出相回溶的程度对退火组织性能的影响很大.含θ″相试样和含θ’相试样经MAC变形后,析出相完全回溶于基体,在退火过程中有新的第二相析出,试样强度升高;同时试样的的塑性也得到了提高,这与再析出粒子对超细晶粒长大的阻碍作用有关.析出相未完全回溶的含θ相试样,退火后强度低于退火前,析出相回溶和再析出交替进行.析出相基本回溶态强韧化效果最佳.  相似文献   

9.
Severe plastic deformation (SPD) of titanium creates an ultrafine-grained (UFG) microstructure which results in significantly enhanced mechanical properties, including increasing the high cycle fatigue strength. This work addresses the challenge of maintaining the high level of properties as SPD processing techniques are evolved from methods suitable for producing laboratory scale samples to methods suitable for commercial scale production of titanium semi-products. Various ways to optimize the strength and fatigue endurance limit in long-length Grade 4 titanium rod processed by equal channel angular pressing (ECAP) with subsequent thermal mechanical treatments are considered in this paper. Low-temperature annealing of rods is found to increase the fatigue limit, simultaneously enhancing UFG titanium strength and ductility. The UFG structure in titanium provides an optimum combination of properties when its microstructure includes mostly equiaxed grains with high-angle boundaries, the volume fraction of which is no less than 50%.  相似文献   

10.
《Materials Letters》2007,61(23-24):4599-4602
A new severe plastic deformation (SPD) method called C shape equal channel reciprocating extrusion (CECRE) was developed to fabricate fine grained AZ31 Mg alloys. The results show that homogeneous microstructure with mean grain size of 3.6 μm is obtained as the accumulated true strain is increased to 11. Strain localization leading to dynamic recrystallizaion (DRX) occurring is the main reason for grain refinement during CECRE process. At the same time, the hardness of AZ31 alloy increases from 62.6 of as-extruded to 74.6 of CECRE 4 passes.  相似文献   

11.
12.
The results of studying the effect of grain-boundary diffusion acceleration during the annealing of submicrocrystalline (SMC) materials prepared by severe plastic deformation techniques are described. It is shown that the grain-boundary diffusion coefficient during recrystallization of SMC materials depends on the density of lattice dislocations and the pattern and rate of migration of the grain boundaries. It is found that, in SMC metals that undergo anomalous grain growth during annealing, the grain-boundary diffusion coefficient increases and its activation energy decreases. In SMC materials in which the recrystallization process exhibits conventional behavior, the diffusion properties of grain boundaries hardly differ from the equilibrium properties. Expressions describing the dependence of the grain-boundary diffusion coefficient on the migration rate of grain boundaries, as well as the thermodynamic and crystallographic parameters of the material, are derived. The calculation results are compared with the experimental data.  相似文献   

13.
Microstructural parameters like crystallite size, lattice strain, stacking faults and dislocation density were evaluated from the X-ray diffraction data of boron nitride (BN) powder milled in a high-energy vibrational ball mill for different length of time (2-120 h), using different model based approaches like Scherrer analysis, integral breadth method, Williamson-Hall technique and modified Rietveld technique. From diffraction line-broadening analysis of the successive patterns of BN with varying milling time, it was observed that overall line broadening was an operative cause for crystallite size reduction at lower milling time (∼5 h), whereas lattice strains were the prominent cause of line broadening at higher milling times (>19 h). For intermediate milling time (7-19 h), both crystallite size and lattice strain influence the profile broadening although their relative contribution vary with milling time. Microstructural information showed that after long time milling (>19 h) BN becomes mixture of nanocrystalline and amorphous BN. The accumulations of defects cause this crystalline to amorphous transition. It has been found that twin fault (β′) and deformation fault (α) significantly contributed to BN powder as synthesized by a high-energy ball-milling technique. Present study consider only three ball-milled (0, 2 and 3 h) BN powder for faults calculation because fault effected reflections (1 0 1, 1 0 2, 1 0 3) disappear with milling time (>3 h). The morphology and particle size of the BN powders before and after ball milling were also observed in a field emission scanning electron microscope (FESEM).  相似文献   

14.
Nanocrystalline Fe-doped ZnO films were obtained by spin coating, using zinc acetate and iron acetate as starting materials and N,N-dimethylformamide as solvent. Characteristic XRD patterns indicate that the films under study are single phase with the ZnO-like wurtzite structure. There are not any secondary phases and Fe2+ as well as Fe3+ substitutes for Zn2+ of ZnO host. Atomic force microscopy analysis revealed that the studied films are characterized by high-density columnar structure and the incorporation of Fe atoms into the ZnO lattice modified the surface morphology. The sensitivity, at three different gases, was investigated and it was observed that acetone is the test gas that produces the most significant changes in the electrical resistance of all studied samples. Experimental results indicate that the optimum operating temperature increases for Fe-doped ZnO films by comparison with the undoped one. Also, the values of sensitivity were found to depend on the dopant concentration in ZnO films.  相似文献   

15.
16.
The influence of grain-boundary structure on grain growth in copper subjected to severe plastic deformation has been studied using orientation imaging microscopy. The investigation was carried out on oxygen-free high-conductivity (OFHC) copper which was wire drawn to a true strain of about 4 and processed by equal-channel angular extrusion (ECAE) to 4 and 8 passes via “route Bc” (where the billet is rotated by 90° in the same direction between consecutive passes). The grain-boundary character distribution (GBCD) of the as-drawn wire was similar to that of ECAE-processed specimens, and both materials possessed a higher fraction of high-angle grain boundaries (HAGBs) than special coincidence-site lattice (CSL) boundaries. While the high fraction of HAGBs was retained in the annealed wires, they were transformed to CSL boundaries in the annealed ECAE-processed materials. In spite of an initially smaller grain size, when annealed at 750 °C for 1 h, the grain size of the 4-pass ECAE-processed material was larger than that of the wire drawn to a similar strain. This difference was attributed to a high density of high-mobility 35–50° 0 0 1 boundaries in the 4-pass ECAE materials. On the other hand, the presence of 50–60° 1 1 1  pinning boundaries in the annealed 8-pass material accounted for the smaller grain size after recrystallization.  相似文献   

17.
M.C. Liu 《Thin solid films》2010,518(24):7295-4554
Metallic glasses have recently been extended their research and application in micro-electro-mechanical systems (MEMS). However, the brittle nature of metallic glasses in the bulk and thin film forms inevitably imposes limitation. The current study applies the new idea to adopt a thin layer of nanocrystalline metal film beneath the brittle binary ZrCu thin film metallic glass (TFMG) layer. This metal film needs to be sufficiently strong in modulus and strength and needs to be deposited with the appropriate film orientation. The face-centered cubic Cu {111} film appears to be too soft, the body-centered cubic Mo {110} film behaves to be too brittle, but the hexagonal close-packed Zr {0001} film matches all above requirements. The shear bands initiated in the ZrCu thin film metallic glass layer can be absorbed and accommodated by the nanocrystalline Zr {0001} layer via the nano-twinning mechanism. The original brittle ZrCu TFMG, with the inclusion of a Zr layer beneath, can behave highly ductile with semi-uniform plastic deformation of 55%, even more ductile than most pure metals. The amorphous-crystalline interface exhibits good strain compatibility after appreciable plastic deformation. This finding can impose great impact on the TFMG/metal multilayer structures useful for MEMS design.  相似文献   

18.
Commercial MgAlZn alloy AZ31 was processed by two techniques of severe plastic deformation (SPD)—extrusion followed by equal channel angular pressing (EX-ECAP), and high pressure torsion (HPT). Processing by ECAP was conducted at elevated temperature of 180 °C for 1–12 passes following route BC. HPT was applied at room temperature, and the specimens of the diameter of 19 mm with different number of turns (N = ¼ ? 15) were prepared. Mechanical properties and grain fragmentation with strain due to EX-ECAP and HPT were investigated by Vickers microhardness measurements and transmission electron microscopy, respectively. Variations in dislocation density were investigated by positron annihilation spectroscopy. Differences in microhardness, grain refinement and dislocation density evolution resulting from principal differences of straining were found in the specimens. EX-ECAP resulted in homogeneous microstructure throughout the specimen's cross section as early as after four passes. On the other hand, laterally inhomogeneous microstructure with gradual reduction of grain sizes from the centre towards the periphery of the disk was observed in specimens after HPT. This microstructure and microhardness inhomogeneities were continuously smeared out and almost homogeneous ultrafine-grained structure was observed in specimen subjected to 15 HPT turns. Variations in mechanical properties and dislocation density evolution were compared in conditions corresponding to the same equivalent strain imposed by both techniques of SPD.  相似文献   

19.
Nanosecond lasers of different intensities were pulsed into sputter-deposited amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning electron microscopy having secondary and back-scattered electrons, field emission scanning electron microscopy, optical microscopy and X-ray diffraction patterns were used to characterize the laser treated spots. Effect of nanosecond pulse lasering on microstructure, morphology, thermal diffusion and inclusion formation was investigated. Increasing beam intensity and laser pulse-number promoted amorphous to R-phase transition. Lowering duration of the pulse incidence reduced local film oxidation and film/substrate interference.  相似文献   

20.
The microstructure and the average grain size were investigated by x-ray diffraction and transmission electron microscopy for nanocrystalline (n) Ni-P alloys with 18, 19, and 22 at.% P. A detailed study of the nanocrystalline states obtained along different heat treatment routes has been performed: (1) a-->ni by isothermal annealing of the melt-quenched amorphous (a) Ni-P alloys; (2) ni-->nii by isothermal annealing of the nanocrystalline ni state; (3) ni-->nii by linear heating of the ni state. The heats evolved during the structural transformations were determined by differential scanning calorimetry. From these studies, a scheme of the structural transformations and their energetics was constructed, which also includes previous results on phases obtained by linear heating of the as-quenched amorphous state of the same alloys. Grain boundary energies also have been estimated. In some cases it was necessary to assume a variation of the specific grain boundary energy during the phase transformation to understand the enthalpy and microstructure changes during the different heat treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号