首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 555 毫秒
1.
提出了一种由刚性元和零厚度的内聚力单元组合而成的新型界面单元,该界面单元嵌在板壳结构界面之间,可用来模拟界面损伤的起始和演化,能考虑板壳的平动和转动对分层损伤的作用。该界面单元具有有限厚度,八个结点,每个结点有五个自由度,通过刚性元将板壳单元结点的位移和结点力转换到内部零厚度的内聚力单元上,界面损伤通过内聚力单元的损伤演化体现出来。采用板壳单元和新型界面单元建立有限元模型,对混合弯曲(MMB)试验和双悬臂梁(DCB)弯曲试验进行了计算模拟,计算结果能很好地模拟结构的界面损伤过程。相比传统的用内聚力单元和三维实体单元组成的模型,建模方便,在精度相当的前提下,可以使单元尺寸增大一倍,减少裂尖内聚力区域(cohesive zone)内的单元数量,缩小计算规模,提高计算效率。  相似文献   

2.
提出一种用于板料成形数值模拟的网格结点编号优化算法.该算法用各个结点的相邻单元结点编号总和除以该结点相邻单元数,所得的结点商作为重新结点编号的依据,对板料成形模拟的四边形单元结点编号进行优化,减少了带宽,减少有限元的计算贮存量,缩短了板料成形数值模拟的计算时间.  相似文献   

3.
田辉 《硅谷》2008,(10):12-13
矩阵位移法分析桁架结构,具有易于实现计算自动化的优点,得到广泛应用.它的主要解题思路是:首先将结构离散成为有限个独立的单元,进行单元分析,建立单元杆端力与单元杆端位移之间的关系式---单元刚度方程;然后利用结构的变形连续条件和平衡条件将各单元组成整体,建立结点力与结点位移之间的关系式---结构刚度方程,这一过程为整体分析;最后求得结构的位移和内力.矩阵位移法就是在一分一合,先拆后搭的过程中,把复杂结构计算问题转化为简单的单元分析和集合问题.  相似文献   

4.
梁杆结构二阶效应分析的一种新型梁单元   总被引:6,自引:0,他引:6  
推导了一种计及梁杆二阶效应的新型两结点梁单元。首先依据插值理论构造了三结点Euler-Bernoulli梁单元的位移场:使用五次Hermite插值函数建立梁单元的侧向位移场,二次Lagrange插值函数建立梁单元的轴向位移场,进而由非线性有限元理论推导了单元的线性刚度矩阵和几何刚度矩阵,然后使用静力凝聚方法消除三结点梁单元中间结点的自由度,从而得到一种考虑轴力效应的新型两结点梁单元。实例分析表明,此新型梁单元具有很高的计算精度,使用此单元进行梁杆结构分析可获得相当准确的二阶位移和内力。  相似文献   

5.
单位分解增强自然单元法计算应力强度因子   总被引:2,自引:2,他引:0  
自然单元法是一种新兴的无网格数值计算方法,但应用于裂纹问题计算时,其近似函数并不能准确反映裂纹尖端附近应力场的奇异性,需要在缝尖附近增大结点布置密度以获得一定的计算精度。在单位分解框架下将缝尖渐近位移场函数嵌入到自然单元法近似函数中,应用伽辽金过程获得平衡方程的离散线性方程,用相互作用能量积分方法计算了混合模式裂纹的应力强度因子。算例分析表明:单位分解增强自然单元法可以方便地处理裂纹问题,在不增加结点布置密度的情况下可有效提高应力强度因子的计算精度。  相似文献   

6.
具有T单元张拉膜结构的找形分析   总被引:1,自引:0,他引:1  
王勇  魏德敏 《工程力学》2005,22(4):215-219
论述了张拉膜结构找形分析的力密度法,同时对边界索进行T单元的强化处理;建立了索边界主结点和索网内部T单元结点的静力平衡方程,据此编制了相应的计算软件;对工程实例进行了验算,结果表明,给出的计算结果与德国著名软件EASY的计算结果相吻合。  相似文献   

7.
陈朝晖  陶宇宸  何敏 《工程力学》2021,38(11):57-65
大跨、高层等柔性结构,其动力响应往往表现出大位移、大转动等非线性特征。动力非线性问题的分析关键在于运动方程的高效稳定求解,以及单元大转动产生的结点力增量的有效计算。动力时程分析通常采用直接积分法,但对于强非线性动力问题,直接积分法难以兼顾计算精度与稳定性。该文基于几何非线性分析的刚体准则,针对杆件结构大转动小应变的非线性问题,提出了一种新型空间杆系结构动力非线性分析的刚体准则法。该方法采用满足刚体准则的空间非线性梁单元,结合HHT-α法求解结构运动方程,并将刚体准则植入动力增量方程的迭代求解过程以计算结点力增量。通过典型柔性框架算例结果表明,该文方法可以有效分析柔性框架结构的强动力非线性行为。与高精度单元相比,该文采用的单元刚度矩阵构造简明,计算过程简洁;与商业软件所用方法相比,单元数和迭代步少,精度高,适于工程应用。  相似文献   

8.
军火库或危险品仓库存在着偶然爆炸的威胁,而钢筋混凝土是这些建筑物的主要构成材料,因此研究钢筋混凝土结构在爆炸荷载下的破坏过程具有重要意义。该文基于LS-DYNA动力有限元程序,利用任意拉格朗日–欧拉(ALE)方法,以及多物质流固耦合方法对混凝土结构在爆炸荷载作用下的动态破坏过程进行研究。为了更好分析混凝土结构在爆炸荷载作用下的动力响应,采用了考虑应变率影响的钢筋和混凝土材料本构模型,并引入零厚度粘聚力单元来模拟混凝土的动态破坏过程,克服基于侵蚀算法单元删除带来的质量损失问题。该文首先介绍零厚度粘聚力单元模型的生成过程并对比试验结果,验证所建立的零厚度粘聚力单元模型的合理性。其次,对比不同爆炸荷载下基于侵蚀算法以及零厚度粘聚力单元两种不同模拟方法的模拟结果,验证基于零厚度粘聚力单元模拟的优越性。最后基于零厚度粘聚力单元模型,分析不同爆炸荷载对混凝土结构动态破坏过程以及碎片抛射的影响。  相似文献   

9.
本文提出用转移矩阵法计算连续梁的内力和位移。将连续梁两端结点的位移和杆端力,用转移矩阵来表达,然后由边界条件求解,再求出各单元的位移和杆端力。对有n个结点的连续梁,每个结点的未知量为Z,采用一般矩阵位移法计算,未知量数目为nZ个,而按本文方法计算,未知量数目仅为2Z个。未知量数目与结点总数无关。这将大大减少存贮量和计算工作量,结点数目越多,优点越明显。  相似文献   

10.
基于粘性裂缝模型理论,在实体单元中嵌入粘性界面单元(Cohesive Interface Elements),对Koyna重力坝的强震破坏过程进行了二维有限元模拟和分析,并与其它数值方法的结果进行了对比。结果表明,大坝的破坏开裂分布与Koyna大坝实际破坏情况及文献中的模型试验结果基本相符,说明粘性界面单元可以很好地模拟裂缝的断裂和扩展,验证了本文方法的有效性。  相似文献   

11.
12.
An augmented finite element method (“A-FEM”) is presented that is a variant of the method of Hansbo and Hansbo (Comput Methods Appl Mech Eng, 193: 3523–3540, 2004), which can fully account for arbitrary discontinuities that traverse the interior of elements. Like the method of Hansbo and Hansbo, the A-FEM preserves elemental locality, because element augmentation is implemented within single elements and involves nodal information from the modified element only. The A-FEM offers the additional convenience that the augmentation is implemented via separable mathematical elements that employ standard finite element nodal interpolation only. Thus, the formulation is fully compatible with standard commercial finite element packages and can be incorporated as a user element without access to the source code. Because possible discontinuities include both elastic heterogeneity and cracks, the A-FEM is ideally suited to modeling damage evolution in structural or biological materials with complex morphology. Elements of a multi-scale approach to analyzing damage mechanisms in laminated or woven textile composites are used to validate the A-FEM and illustrate its possible uses. Key capabilities of the formulation include the use of meshes that need not conform to the surfaces of heterogeneities; the ability to apply the augmented element recursively, enabling modeling of multiple discontinuities arising on different, possibly intersecting surfaces within an element; and the ease with which cohesive zone models of nonlinear fracture can be incorporated.  相似文献   

13.
The Complex Variable Boundary Element Method or CVBEM is a numerical technique for approximating particular partial differential equations such as the Laplace or Poisson equations (which frequently occur in physics and engineering problems, among many other fields of study). The advantage in using the CVBEM over traditional domain methods such as finite difference or finite element based methods includes the properties that the resulting CVBEM approximation is a function: (i) defined throughout the entire plane, (ii) that is analytic throughout the problem domain and almost everywhere on the problem boundary and exterior of the problem domain union boundary; (iii) is composed of conjugate two-dimensional real variable functions that are both solutions to the Laplace equation and are orthogonal such as to provide the “flow net” of potential and stream functions, among many other features. In this paper, a procedure is advanced that locates CVBEM nodal point locations on and exterior of the problem boundary such that error in matching problem boundary conditions is reduced. That is, locating the nodal points is part of modeling optimization process, where nodes are not restricted to be located on the problem boundary (as is the typical case) but instead locations are optimized throughout the exterior of the problem domain as part of the modeling procedure. The presented procedure results in nodal locations that achieve considerable error reduction over the usual methods of placing nodes on the problem boundary such as at equally spaced locations or other such procedures. Because of the significant error reduction observed, the number of nodes needed in the model is significantly reduced. It is noted that similar results occur with the real variable boundary element method (or BEM).The CVBEM and relevant nodal location optimization algorithm is programmed to run on program Mathematica, which provides extensive internal modeling and output graphing capabilities, and considerable levels of computational accuracy. The Mathematica source code is provided.  相似文献   

14.
A new approach was developed for the evaluation of energy release rate by the virtual crack closure technique in quadratic and linear elements. The generalized method allows arbitrary placement of the side nodes for quadratic elements and thus includes both standard elements, with mid-side nodes, and singularity elements, with quarter-point nodes, as special cases of one general equation. It also accounts for traction-loaded cracks. The new derivation revealed that the proper nodal forces needed for crack closure calculations should be the newly-defined “nodal edge forces,” rather than the global or element forces from standard finite element analysis results. A method is derived for calculating nodal edge forces from global forces. These new forces affect energy release rate calculations for singularity elements and for problems with traction-loaded cracks. Several sample calculations show that the new approach gives improved accuracy.  相似文献   

15.
A hybrid method is presented that uses a representative volume element-based multiscale finite element technique combined with a peridynamics method for modeling fracture surfaces. The hybrid method dynamically switches from finite element computations to peridynamics based on a damage criterion defined on the peridynamics grid, which is coincident with the nodes of the finite element mesh. Nodal forces are either computed by the finite element method or peridynamics, as appropriate. The multiscale finite element method used here is a representative volume element-based approach so that inhomogeneous local scale material properties can be derived using homogenization. In addition, automatic cohesive zone insertion is used at the local scale to model fracture initiation. Results demonstrate that local scale flaw distributions can alter fracture patterns and initiation times, and the use of cohesive zone insertion can improve accuracy of crack paths.  相似文献   

16.
钢筋混凝土框架结构破坏性能的离散单元法模拟   总被引:5,自引:0,他引:5  
金伟良  方韬 《工程力学》2005,22(4):67-73
离散单元法是模拟结构破坏的一种有效的分析方法。通过引入节点单元和考虑混凝土的非线性对矩形离散单元模型进行了改进,并给出了改进后离散单元模型的破坏准则和基本方程以及弹簧系数等计算参数的确定;改进后的模型采用了双链表技术,提高了模型的计算效率。对在爆炸荷载作用下的钢筋混凝土框架结构的倒塌破坏过程进行了模拟,结果表明:采用改进后的离散单元法可以有效地模拟钢筋混凝土框架结构的倒塌破坏过程。  相似文献   

17.
This paper presents mathematical derivation of enrichment functions in the extended finite element method for numerical modeling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition and reproduction technique. We start with the simple case of a triangular linear element cut by one interface across which displacement field suffers a jump. The main steps towards the derivation of enrichment functions are as follows: (1) extension of the subfields separated by the interface to the whole element domain and definition of complementary nodal variables; (2) construction of characteristic functions for describing the geometry and physical field; (3) determination of the sets of basic nodal variables; (4) domain decompositions according to Step 3 and then reproduction of the physical field in terms of characteristic functions and nodal variables; and (5) comparison of the piecewise interpolations formulated at Steps 3 and 4 with the standard extended finite element method form, which yields enrichment functions. In this process, the physical meanings of both the basic and complementary nodal variables are clarified, which helps to impose Dirichlet boundary conditions. Enrichment functions for weak discontinuities are constructed from deeper insights into the structure of the functions for strong discontinuities. Relationships between the two classes of functions are naturally established. Improvements upon basic enrichment functions for weak discontinuities are performed so as to achieve satisfactory convergence and accuracy. From numerical viewpoints, a simple and efficient treatment on the issue of blending elements is also proposed with implementation details. For validation purposes, applications of the derived functions to heterogeneous problems with imperfect interfaces are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Cracks with quasibrittle behavior are extremely common in engineering structures. The modeling of cohesive cracks involves strong nonlinearity in the contact, material, and complex transition between contact and cohesive forces. In this article, we propose a novel contact algorithm for cohesive cracks in the framework of the extended finite element method. A cohesive-contact constitutive model is introduced to characterize the complex mechanical behavior of the fracture process zone. To avoid the stress oscillations and ill-conditioned system matrix that often occur in the conventional contact approach, the proposed algorithm employs a special dual Lagrange multiplier to impose the contact constraint. This Lagrange multiplier is constructed by means of the area-weighted average and biorthogonality conditions at the element level. The system matrix can be condensed into a positive definite matrix with an unchanged size at a very low computational cost. In addition, we illustrate solving the cohesive crack contact problem using a novel iteration strategy. Several numerical experiments are performed to illustrate the efficiency and high-quality results of our method in contact analysis of cohesive cracks.  相似文献   

19.
考虑剪滞变形时箱形梁广义力矩的数值分析   总被引:1,自引:0,他引:1  
为了简化变截面箱梁等复杂结构的剪滞效应分析,在明确定义相应于剪滞位移的广义力矩和有关几何特性的基础上,提出一种梁段有限元数值分析方法。选取控制微分方程的齐次解作为单元位移函数,以各积分常数为中间转换变量,推导梁段单元刚度矩阵和等效节点力向量的具体表达式,并给出用单元节点力直接计算应力的一般公式。编制了箱梁梁段有限元程序,对简支、悬臂、连续箱梁3个有机玻璃模型进行计算并与实测结果对比,验证了该文方法及公式的正确性。用所编程序对箱梁的剪滞广义力矩进行数值分析,并揭示了其变化规律。研究表明,在竖向荷载作用下,剪滞力矩与弯矩具有相似的分布规律,而且数值大小也接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号