首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
树皮是一种来源丰富可再生的天然高分子材料。本文采用高温苯酚液化的方法,在复合酸存在下将落叶松全树皮液化成为木材胶粘剂的原料。研究了树皮液化产物制备木材胶粘剂的合成工艺,特别是碱用量对苯酚液化落叶松全树皮一甲醛胶粘剂各主要性能的影响。结果表明,增加碱用量会缩短树皮胶的贮存期,但可降低胶中的游离甲醛;通过降低树皮胶合成时的终点黏度,并在合成末期用水稀释,可有效提高树皮胶的适用期,并可确保树皮胶具有很好的胶接强度和耐水性、较快的固化速率以及很低的游离甲醛释放量。  相似文献   

2.
核桃壳液化产物制备木材胶粘剂的研究   总被引:4,自引:1,他引:3  
研究了核桃壳苯酚液化产物制备的酚醛树脂类木材胶粘剂及性能。结果表明,核桃壳经酸催化苯酚液化一段时间后,液化混合液的残渣率、游离苯酚和可被溴化物质量分数分别为22.11%、18.00%和33.10%,利用此液化混合液替代苯酚,所制备的酚醛树脂类胶粘剂能够满足混凝土模板用胶合板生产的要求。  相似文献   

3.
研究了催化剂用量、苯酚/甲醛摩尔比对兵乓球拍用胶粘剂干/湿胶合强度、粘度的影响.结果表明,随着催化剂用量的增加,胶粘剂的干胶合强度和湿胶合强度都呈现先增大后减小,游离甲醛和游离苯酚都逐渐减小,固体含量和粘度都呈现先增大后减小的特征,在催化剂含量为3%时取得胶合强度、固体含量和粘度最大值,此时胶粘剂的固体含量和粘度分别达...  相似文献   

4.
四种原料生物油-酚醛树脂胶粘剂特性研究   总被引:4,自引:3,他引:1  
利用生物质快速热解液化产物制备燃料或化工产品已成为国内外的研究热点。将四种生物质原料(落叶松、杨木、棉秸秆和玉米秸秆)快速热解液化产物作为苯酚替代物,由此制备出不同种类的热解生物油-PF(酚醛树脂)胶粘剂,并探讨了胶粘剂胶接强度与热解生物油组成的关系。结果表明:落叶松热解生物油-PF胶粘剂的胶接强度最大(1.277 MPa),玉米秸秆热解生物油-PF胶粘剂的胶接强度最小(1.021 MPa);胶粘剂的胶接强度主要与热解生物油中酚类物质含量有关。  相似文献   

5.
以大豆蛋白为基质,加入木质素提升胶粘剂在粘接和耐水方面的性能。对该胶粘剂进行了凝胶渗透色谱(GPC)法测定和静态热机械分析(TMA)法分析,并探讨了木质素对木材胶粘剂性能的影响。研究结果表明:分子量分布系数较低,胶粘剂的耐热性提升;木质素质量分数的增大有利于剪切强度、抗水时间、断裂伸长率的提升,而拉伸强度和冲击强度则有所下降;在耐老化性能测试中,制备的胶合板的干状胶合强度和木破率性能指标表现良好。  相似文献   

6.
羧甲基化木材(CM wood)-苯酚树脂胶的制备方法有两种:捏和法“和”溶剂分解法”.文中研究了所得胶粘剂强度.两种方法的溶解步骤不同.捏和法是在剪切条件下在100~120℃下捏和,使CM木材溶解在苯酚溶液中,而溶剂分解法则是在有适量盐酸存在下80℃时,通过酚化促进溶解.用溶剂分解法制得的木材基胶粘剂与捏和法制  相似文献   

7.
以花生壳苯酚液化产物为原料,制备花生壳苯酚液化产物-尿素-甲醛(PLPUF)树脂胶黏剂。采用正交试验探讨了制备PLPUF树脂胶黏剂的最优配比,以提高其综合性能,结果表明:第一批尿素(U1)/第二批尿素(U2)物质的量比、液化产物(PL)/尿素(U)物质的量比以及液化产物和尿素总用量(PL+U)与甲醛(F)物质的量比为3:1、1:1.5和1:1是PLPUF树脂胶黏剂制备的最佳配比;此配比下胶合强度达到了0.83 MPa,含固体量为47.11%,游离甲醛的量为0.05%,以酚醛树脂胶黏剂为标准,PLPUF树脂胶黏剂能满足木材工业树脂的使用要求。PLPUF树脂在贮存过程中黏度逐渐上升,贮存5~15 d胶合强度为0.87~1.15 MPa,22 d后胶合强度降低至0.74 MPa,仍可满足使用条件。PLPUF树脂的FT-IR图中出现酰胺C=O和C—N等伸缩振动峰,表明尿素参与反应、改性树脂,而加入固化剂前后树脂的FT-IR吸收峰相同,结合DSC曲线表明固化剂的加入不改变树脂结构,但可以改善PLPUF树脂的固化过程,降低固化温度和固化反应热。  相似文献   

8.
木材液化及其在高分子材料中的应用   总被引:9,自引:1,他引:9  
木材通过液化可转化为具有反应活性的液态产物,进一步反应可以制备胶粘剂、聚氨酯材料等新型高分子材料。文章从方法、机理以及其产物在制备高分子材料等方面对木材液化的研究进展进行了评述。  相似文献   

9.
<正>本技术采用苯酚、甲醛在催化剂碱作用下两步加料法制备了高羟甲基含量的耐水性好的酚醛树脂胶粘剂,可用于室外木/竹材人造板制备,胶合强度按I类胶合板耐水性测试法测定达2.8~4.3 MPa,游离甲醛含量为0.07%~0.27%,游离苯酚含量为2%~5%,固含量≥50%,pH≥8.0,粘度≥100 mPa,即各项性能参数均达GB/T 14732-2006国家木材工业酚醛树脂胶粘剂标准。合作方式:技术转让  相似文献   

10.
棉秆焦油替代苯酚合成酚醛树脂胶粘剂的研究   总被引:1,自引:1,他引:0  
采用气/质联用仪(GC/MS)对棉秆焦油的成分进行了分析,确定了62种化合物,其中酚类化合物的相对含量为25.755%。用棉秆焦油部分替代苯酚合成酚醛树脂(PF)胶粘剂,并对其性能进行了研究。实验结果表明,棉秆焦油替代量对所合成的PF胶粘剂的粘度和胶合强度等性能影响较大;当m(棉秆焦油)=25g(即苯酚替代量达到19.2%)时,所制得的PF胶粘剂的粘度适中、w(游离甲醛)<0.5%,具有较高的胶合强度,并且胶合强度达到GB/T9846-2004标准中对Ⅰ类胶合板的要求。由于棉秆焦油的加入降低了PF胶粘剂的成本,因此,该PF胶粘剂具有良好的应用前景。  相似文献   

11.
杉木苯酚液化物合成热固型酚醛树脂的研究   总被引:3,自引:1,他引:2  
以杉木为研究树种,对比不同料液比(木材与苯酚质量比)液化物与甲醛在碱性环境中反应,进行热固酚醛树脂制备试验。考察不同甲醛与苯酚物质的量之比值(rF/P)、氢氧化钠与苯酚物质的量之比值(rNaOH/P)和树脂化温度对树脂理化性能的影响。结果表明,采用料液比为1:2的液化物,rF/P1.8,rNaOH/P0.7,树脂化温度 80℃ 条件下合成的杉木液化物树脂压制的杨木三层胶合板满足I类胶合板强度要求,各项物理力学性能与常规PF树脂压制的板材相当,板材的甲醛释放量为 0.1 mg/L,远低于GB/T 9846-2004《胶合板》中的E0级要求。  相似文献   

12.
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three‐necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac‐type liquefied wood/phenol/formaldehyde (LWPF) resins: LWPF1 (the atmospheric reactor) and LWPF2 (the sealed reactor). The LWPF1 resin had a higher solid content and higher molecular weight than the LWPF2 resin. The cure kinetic mechanisms of the LWPF resins were investigated with dynamic and isothermal differential scanning calorimetry (DSC). The isothermal DSC data indicated that the cure reactions of both resins followed an autocatalytic mechanism. The activation energies of the liquefied wood resins were close to that of a reported lignin–phenol–formaldehyde resin but were higher than that of a typical phenol formaldehyde resin. The two liquefied wood resins followed similar cure kinetics; however, the LWPF1 resin had a higher activation energy for rate constant k1 and a lower activation energy for rate constant k2 than LWPF2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A liquefied wood‐based resol resin was prepared with excellent yield by a reaction of liquefied wood and formaldehyde under alkaline conditions. The effects of various reaction parameters on the extent of the yield of the resol resin, unreacted phenol content, and viscosity were investigated. Milder resol resinification conditions were required as compared to those used in conventional methods. The liquefied wood‐based resol resin was successfully applied to produce phenolic foam using appropriate combinations of foaming agents. Diisopropyl ether with a relatively higher boiling temperature was suitable for the foaming of liquefied wood‐based resol resin. Hydrochloric acid and poly(ethylene ether) of sorbitan monopalmitate were used as a catalyst and a surfactant, respectively. The obtained foams showed satisfactory densities and compressive properties, comparable to those of foams obtained from conventional resol resin. Foams with low density were obtained by the blending of liquefied wood‐based resol resin and conventional resol resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 468–472, 2002; DOI 10.1002/app.10018  相似文献   

14.
Wood-based resol resins were prepared from both water- and sodium hydroxide (NaOH)-catalyzed liquefied phenolated wood. The effects of various reaction parameters, e.g. the concentrations of phenol and formaldehyde, temperature, and time, on the extent of yield, free phenol content, molecular weight as well as the gluability of the resol resins have been evaluated. As far as the yield, free phenol content, and molecular weight are concerned, the optimum conditions of resol resin preparation were found to be a phenol : wood weight ratio of 4 : 6, a formaldehyde : phenol mole ratio of 1.5 : 1, a temperature of 82.5°C, and time 3 h. However, these optimum conditions changed when the performance of the adhesives was considered in terms of the adhesive bond strengths for plywood joints. The yield, molecular weights, polydispersity, and gluability of resol resins prepared from water-catalyzed liquefied wood were lower compared with those prepared from NaOH-catalyzed ones. In most cases, the dry-bond strengths of the experimental plywood joints exceeded the minimum Japan Agricultural Standard (JAS) values. On the other hand, except at a higher formaldehyde: phenol ratio (i.e. 2.0 : 1 mole ratio), the plywood joints of all samples delaminated during 'boil-dry-boil' cyclic treatments. However, both dry- and wet-bond strengths of the plywood joints could be improved to exceed standard values by using an additional crosslinking agent, e.g. poly(methylene (polyphenyl isocyanate)) (polymeric MDI). The adhesive perfomance of the wood-based resol resins was explained on the basis of the adhesion between wood veneers and resol resin adhesives.  相似文献   

15.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Development and characterization of a wood adhesive using bagasse lignin   总被引:8,自引:0,他引:8  
Bagasse is spent fiber left after extraction of sugar. It is mainly used as a fuel to concentrate sugarcane juice. In the present work, the possibility of preparing wood adhesives from bagasse has been explored. The parameters for the preparation of a lignin phenol formaldehyde (LPF) adhesive, (lignin concentration, formaldehyde to phenol molar ratio, catalyst concentration, reaction time and reaction temperature) have been optimized. It was found that up to 50% of phenol can be substituted by bagasse lignin to give LPF wood adhesive having better bonding strength in comparison to a control phenol formaldehyde (CPF) wood adhesive. Prepared resins were characterized using IR, DSC and TGA. IR spectra of LPF resin showed structural similarity with CPF resin. Thermal stability of LPF resin was found to be lower as compared to CPF resin. DSC studies reveal a lower curing temperature for LPF adhesive in comparison to CPF adhesive. A shelf-life study reveals that LPF exhibits consistent behavior as compared to CPF in respect to adhesive strength.  相似文献   

17.
A phenolated wood/phenol/formaldehyde cocondensed novolac-type resin was prepared with a two-stage procedure. Wood was first liquefied in the presence of phenol by using an acid catalyst to produce a phenolated wood, and after the liquefaction, formalin (i.e., formaldehyde aqueous solution) was added to conduct a cocondensation reaction for converting the remaining nonreacted phenol into resin components. It was found that this procedure can convert almost all the phenol remained after liquefaction into resin, and therefore significantly upgrades the practical value of the liquefaction technique. In addition, it can also greatly improve the thermofluidities of the phenolated wood resins and the mechanical properties of their molded products. As a result, the flow temperatures and melt viscosities of the cocondensed resins were much lower than those of the phenolated wood resins. However, these two properties were more or less similar to those of the conventional novolac resin, resulting in an excellent processability. The flexural properties of the molded products made from the cocondensed resins were much higher than those of the phenolated wood and also somewhat superior to those of the conventional novolac resin. Therefore, this preparation procedure is a prospective technique for preparing wood-based novolac resins. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the obtained liquefied wood were investigated. It was found that phosphoric acid is a satisfactory catalyst for liquefying wood. The amount of phenol that reacts with the liquefied wood components (i.e., combined phenol) increases with an increase in liquefaction temperature, liquefaction time, catalyst content, or liquid ratio. By removing the free phenol, the resulting liquefied woods become novolaclike resins. The measurements of the flow properties of these liquefied woods reveal that the melts of liquefied woods behave as pseudoplastics and their flows obey the Ostwald de Waele power law equation. The amount of combined phenol within the liquefied wood and the presence of filler in the liquefied wood have great influence on their flow properties. The flowing temperature, activation energy, and zero shear viscosity of the liquefied woods show tendencies to increase with an increase in combined phenol. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Corn bran (CB) was liquefied in the presence of phenol at high temperature (200°C) under high pressure (>1 atm) and the obtained liquefied products were reacted with formaldehyde to get phenolated CB/phenol/formaldehyde resins with excellent yields. The properties of the cocondensed resins were examined and compared with the liquefied products before the cocondensation. Little difference was observed in thermofluidity before and after the cocondensation, whereas the thermosetting properties and the flexural properties of the molded products were enhanced. These properties were comparable with those of liquefied resins from corn starch (CS) and those of commercial novolak resin. Moreover, no significant differences were found in the properties of the liquefied products and the thermosetting resins therefrom after removal of the solid residue and neutralization salt. It became apparent that the condensation reactions between formaldehyde and the unreacted phenol in the liquefied products enhance the physical properties of the liquefied products from CB, making possible the total utilization of the liquefied products. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2901–2907, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号