首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present 2D full quantum simulation based on the self-consistent solution of 2D Poisson–Schrödinger equations, within the nonequilibrium Green’s function formalism, for a novel multiple region silicon-on-insulator (SOI) MOSFET device architecture – tri-material double gate (TMDG) SOI MOSFET. This new structure has three materials with different work functions in the front gate, which show reduced short-channel effects such as the drain-induced barrier lowering and subthreshold swing, because of a step function of the potential in the channel region that ensures the screening of the drain potential variation by the gate near the drain. Also, the quantum simulations show the new structure significantly decreases leakage current and drain conductance and increases on–off current ratio and voltage gain as compared to conventional and dual material DG SOI MOSFET.  相似文献   

2.
A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.  相似文献   

3.
This paper presents an approximate solution of a 2-D Poisson’s equation in the channel region, based on physical correspondence between MOSFET and HEMT, with the approximation that the vertical channel potential distribution is a cubic function of position to study not only tied gate but separate gate bias conditions as well. An analytical expression for both front and back heterointerface potential is derived and threshold voltage is obtained iteratively from the proposed potential model. The threshold voltage behavior for tied and separated double-gate HEMT is investigated for various device dimensions. The back gate effect of the separated double gate HEMT is investigated for the depleted back channel only. The results obtained are verified by comparing them with simulated and experimental results.  相似文献   

4.
The novel features of an asymmetric double gate single halo (DG-SH) doped SOI MOSFET are explored theoretically and compared with a conventional asymmetric DG SOI MOSFET. The two-dimensional numerical simulation studies demonstrate that the application of single halo to the double gate structure results in threshold voltage roll-up, reduced DIBL, high drain output resistance, kink free output characteristics and increase in the breakdown voltage when compared with a conventional DG structure. For the first time, we show that the presence of single halo on the source side results in a step function in the surface potential, which screens the source side of the structure from the drain voltage variations. This work illustrates the benefits of high performance DG-SH SOI MOS devices over conventional DG MOSFET and provides an incentive for further experimental exploration.  相似文献   

5.
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor (Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed (as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential (eQFP) decreases as the channel potential starts to decrease, and there are hiphops in the channel eQFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I-V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.  相似文献   

6.
正The double gate(DG) silicon MOSFET with an extremely short-channel length has the appropriate features to constitute the devices for nanoscale circuit design.To develop a physical model for extremely scaled DG MOSFETs,the drain current in the channel must be accurately determined under the application of drain and gate voltages.However,modeling the transport mechanism forthe nanoscale structures requires the use of overkill methods and models in terms of their complexity and computation time(self-consistent,quantum computations,...). Therefore,new methods and techniques are required to overcome these constraints.In this paper,a new approach based on the fuzzy logic computation is proposed to investigate nanoscale DG MOSFETs.The proposed approach has been implemented in a device simulator to show the impact of the proposed approach on the nanoelectronic circuit design.The approach is general and thus is suitable for any type of nanoscale structure investigation problems in the nanotechnology industry.  相似文献   

7.
A new natural gate length scale for MOSFET's is presented using Variational Method. Comparison of the short channel effects is conducted for the uniform channel doping bulk MOSFET, intrinsic channel doping bulk MOSFET, SOI MOSFET and double gated MOSFET. And the results are verified by the 2D numerical simulation. Taken all the 2-D effects on front gate dielectric, back gate dielectric and silicon film into account, the data validity of electrical equivalent oxide thickness is investigated by this model, as shows that it is valid only when the gate dielectric constant is relatively small.  相似文献   

8.
The double gate (DG) silicon MOSFET with an extremely short-channel length has the appropriate features to constitute the devices for nanoscale circuit design. To develop a physical model for extremely scaled DG MOSFETs, the drain current in the channel must be accurately determined under the application of drain and gate voltages. However, modeling the transport mechanism for the nanoscale structures requires the use of overkill methods and models in terms of their complexity and computation time (self-consistent, quantum computations, ...). Therefore, new methods and techniques are required to overcome these constraints. In this paper, a new approach based on the fuzzy logic computation is proposed to investigate nanoscale DG MOSFETs. The proposed approach has been implemented in a device simulator to show the impact of the proposed approach on the nanoelectronic circuit design. The approach is general and thus is suitable for any type of nanoscale structure investigation problems in the nanotechnology industry.  相似文献   

9.
This article presents an analytical surface potential, threshold voltage and drain current model for asymmetric pocket-implanted, single-halo dual material gate and double-halo dual material gate (DHDMG) n-MOSFET (MOSFET, metal–oxide–semiconductor field-effect transistor) operating up to 40?nm regime. The model is derived by applying Gauss's law to a rectangular box, covering the entire depletion region. The asymmetric pocket-implanted model takes into account the effective doping concentration of the two linear pocket profiles at the source and the drain ends along with the inner fringing capacitances at both the source and the drain ends and the subthreshold drain and the substrate bias effect. Using the surface potential model, the threshold voltage and drain currents are estimated. The same model is used to find the characteristic parameters for dual-material gate (DMG) with halo implantations and double gate. The characteristic improvement is investigated. It is concluded that the DHDMG device structure exhibits better suppression of the short-channel effect (SCE) and the threshold voltage roll-off than DMG and double-gate MOSFET. The adequacy of the model is verified by comparing with two-dimensional device simulator DESSIS. A very good agreement of our model with DESSIS is obtained proving the validity of our model used in suppressing the SCEs.  相似文献   

10.
辛艳辉  段美霞 《电子学报》2019,47(11):2432-2437
提出了一种非对称双栅应变硅HALO掺杂沟道金属氧化物半导体场效应管结构.该器件前栅和背栅由两种不同功函数的金属构成,沟道为应变硅HALO掺杂沟道,靠近源区为低掺杂区域,靠近漏区为高掺杂区域.采用分区的抛物线电势近似法和通用边界条件求解二维泊松方程,分别求解了前背栅表面势、前背栅表面电场及前背栅阈值电压,建立了双栅器件的表面势、表面电场和阈值电压解析模型.详细讨论了物理参数对解析模型的影响.研究结果表明,该器件能够很好的抑制短沟道效应、热载流子效应和漏致势垒降低效应.模型解析结果与DESSIS仿真结果吻合较好,证明了该模型的正确性.  相似文献   

11.
文中提出了一种双栅隧穿场效应晶体管(DG TFET)的二维半解析模型。通过在栅绝缘层和沟道区引入两个矩形源,运用半解析法和特征函数展开法求解二维泊松方程,得到电势的二维半解析解。解的结果是一个特殊函数,为无穷级数表达式。基于电势模型,求出最短隧穿长度( )和平均电场( ),运用Kane模型得到漏极电流。新模型考虑了移动电荷对电势的影响以及漏源电压对隧穿参数 和 的影响。文中计算了不同漏源电压,不同硅膜厚度,栅介质层厚度和栅介质层常数下的表面势和漏极电流。结果表明,新模型与仿真结果吻合。这将有助于DG TFET的优化设计,同时,也加深了DG TFET器件对电路结构设计的规划。  相似文献   

12.
利用非平衡格林函数法处理开放边界条件的薛定谔方程,与泊松方程自洽求解,在实空间实现了对纳米量级双栅MOS器件的二维量子模拟。与模空间法的仿真效率及模拟结果进行了比较,对栅极漏电流受栅介质、栅与源漏交叠、栅氧层厚度的影响进行了研究。  相似文献   

13.
《Solid-state electronics》2006,50(7-8):1276-1282
This paper describes an explicit analytical charge-based model of an undoped independent double gate (DG) MOSFET. This model is based on Poisson equation resolution and field continuity equations. Without any fitting parameter or charge sheet approximation, it provides explicit analytical expressions of both inversion charge and drain current considering long undoped transistor. Consequently, this is a fully analytical and predictive model allowing describing planar DG MOSFET as well as FinFET structures. The validity of this model is demonstrated by comparison with Atlas simulations.  相似文献   

14.
亚50nm自对准双栅MOSFET的结构设计   总被引:1,自引:1,他引:0  
殷华湘  徐秋霞 《半导体学报》2002,23(12):1267-1274
描述了一种用综合性方法设计的亚50nm自对准双栅MOSFET,该结构能够在改进的主流CMOS技术上实现.在这种方法下,由于各种因素的影响,双栅器件的栅长、硅岛厚度呈现出不同的缩减限制.同时,侧面绝缘层在器件漏电流和电路速度上表现出特有的宽度效应.建立了关于这种效应的模型,并提供了相关的设计指导.另外,还讨论了一种新型的沟道掺杂设计,命名为SCD.利用SCD的DG器件能够在体反模式和阈值控制间取得较好的平衡.最后,总结了制作一个SADG MOSFET 的指导原则.  相似文献   

15.
This paper present, the modeling and estimation of edge direct tunneling current of metal gate (Hf/AlNx) symmetric double gate MOSFET with an intrinsic silicon channel. To model this leakage current, we use the surface potential model obtained from 2D analytical potential model for double gate MOSFET. The surface potential model is used to evaluate the electric field across the insulator layer hence edge direct tunneling current. Further, we have modeled and estimated the edge direct tunneling leakage current for high-k dielectric. In this paper, from our analysis, it is found that dual metal gate (Hf/AlNx) material offer the optimum leakage currents and improve the performance of the device. This feature of the device can be utilized in low power and high performance circuits and systems.  相似文献   

16.
A planar double-gate SOI MOSFET (DG-SOI) with thin channel and thick source/drain (S/D) was successfully fabricated. Using both experimental data and simulation results, the S/D asymmetric effect induced by gate misalignment was studied. For a misaligned DG-SOI, there is gate nonoverlapped region on one side and extra gate overlapped region on the other side. The nonoverlapped region introduces extra series resistance and weakly controlled channel, while the extra overlapped region introduces additional overlap capacitance and gate leakage current. We compared two cases: bottom gate shift to source side (DG/spl I.bar/S) and bottom gate shift to drain side (DG/spl I.bar/D). At the same gate misalignment value, DG/spl I.bar/S resulted in a larger drain-induced barrier lowering effect and smaller overlap capacitance at drain side than DG/spl I.bar/D. Because of reduced drain-side capacitance, the speed of three-stage ring oscillator of DG/spl I.bar/S, with 20% gate misalignment length (L/sub mis/) over gate length (L/sub g/), or L/sub mis//L/sub g/=20%, was faster than that of two-gate aligned DG-SOI.  相似文献   

17.
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (AVO) and cut-off frequency (fT) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 μA/μm, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (gm), transconductance-to-current ratio (gm/Ids), Early voltage (VEA), output conductance (gds) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs.  相似文献   

18.
Unified MOSFET Short Channel Factor Using Variational Method   总被引:1,自引:1,他引:0  
It is well known that short channel effect is one of the most important constraints that determine the downscaling of MOSFET's.The relationship between the device structure configuration and short channel effect is first expressed empirically in Ref.[1].And recently,due to...  相似文献   

19.
An analytical subthreshold surface potential model for short-channel pocket-implanted (double-halo) MOSFET is presented. The effect of the depletion layers around the source and drain junctions on channel depletion layer depth, which is very important for short-channel devices, is included. Using this surface potential, a drift-diffusion based analytical subthreshold drain current model for short-channel pocket-implanted MOSFETs is also proposed. A physically-based empirical modification of the channel conduction layer thickness that was originally proposed for relatively long-channel conventional device is made for such short-channel double-halo devices. Very good agreement for both the surface potential and drain current is observed between the model calculation and the prediction made by the 2-D numerical device simulation using Dessis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号