首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《塑料科技》2019,(12):18-23
以离聚物沙林树脂(Surlyn 9910)和马来酸酐接枝聚乙烯(PE-g-MAH)作为高密度聚乙烯(HDPE)/尼龙6(PA6)体系的增容剂,通过双螺杆挤出机进行熔融共混。探究了两种不同相容剂的增容效果和增容机理,结果表明:Surlyn 9910和PE-g-MAH均具有增容效果,Surlyn 9910的拉伸强度增强明显,当m(HDPE):m(PA6):m(Surlyn 9910)=80:20:2时,共混物拉伸强度提高至30 MPa。PE-g-MAH的增韧效果更好,当m(HDPE):m(PA6):m(PE-g-MAH)=80:20:2时,共混物断裂伸长率达到98%。通过差示扫描量热法(DSC)以及扫描电镜(SEM)分析了两种相容剂的增容机理,并从微观角度解释了力学性能的差异。相容性的改善提高了HDPE/PA6共混物的剪切黏度。  相似文献   

2.
《塑料》2017,(6)
采用双螺杆挤出机,制备了乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)以及高密度聚乙烯接枝马来酸酐(HDPE-g-MAH)2种增容剂改性的高密度聚乙烯(HDPE)/尼龙(PA6)共混物,研究了不同增容剂对共混物力学性能、耐温性能的影响。采用扫描电镜对共混物的冲击断面进行观察分析。结果表明:相容剂POE-g-MAH的增容效果优于HDPE-g-MAH。PA6添加量为15%时,相容剂HDPE-g-MAH的耐热改性效果优于POE-g-MAH,比纯HDPE的维卡软化点提高了5.8℃,共混物的断裂伸长率为35.0%,降低了1%,拉伸强度为22 MPa,提高了1 MPa,冲击强度为70.6 k J/m2;相容剂为POE-g-MAH时,共混物的断裂伸长率为60.2%,降低了8.4%,共混物的拉伸强度为18.9 MPa,提高了0.4 Mpa,冲击强度为86.7 k J/m2。  相似文献   

3.
用十八烷基缩水甘油醚(OGE)对聚乳酸(PLA)的端羧基进行封端反应制备了十八烷基封端聚乳酸(OCP),并将其作为增容剂,采用熔融共混的方法制备了PLA/高密度聚乙烯(HDPE)共混材料。研究了OCP用量对共混物的热性能、结晶行为、形态结构、耐热性及力学性能的影响。结果表明,OCP有利于提高共混物的结晶速率、可促进HDPE在PLA中的分散;当OCP质量分数为2.7%时,共混材料的维卡软化温度提高了13%,冲击强度提高了19%。  相似文献   

4.
增容PP/回收PET共混物的力学性能   总被引:2,自引:0,他引:2  
采用熔融挤出法制备了聚丙烯(PP)/增容剂/回收聚对苯二甲酸乙二酯(r-PET)共混物,研究了r-PET、不同增容剂和混合增容剂对PP/r-PET共混物力学性能的影响.r-PET提高了PP的拉伸强度、弯曲强度及其模量,但降低了冲击强度;采用马来酸酐接枝聚丙烯(PP-g-MAH)增容,可提高PP/r-PET共混物的拉伸强度、弯曲强度及其模量,但使冲击强度稍有降低;马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)增容或PP-g-MAH/POE-g-MAH混合增容可提高PP/r-PET共混物的冲击强度,且对共混物的拉伸和弯曲强度影响不大.  相似文献   

5.
用环氧树脂E-44作为反应性的增容剂,采用熔融共混方法制备了尼龙6(PA6)/废印刷电路板非金属粉(N-PCB)复合材料。研究了E-44用量、挤出温度以及N-PCB粉末的粒径大小对PA6/N-PCB复合材料力学性能和热变形温度的影响。对复合材料抽提残留物的红外分析实验结果表明E-44与PA6/N-PCB复合材料中PA6以及N-PCB粉末表面发生了化学键合。添加1.25份E-44的PA6/N-PCB复合材料与纯PA6相比,其拉伸强度、拉伸模量、弯曲强度和弯曲模量最大增幅分别为29%、49%、73%和72%,热变形温度提高了42.8℃,但其韧性降低。与未加增容剂相比,其拉伸强度、弯曲强度和缺口冲击强度最大增幅分别为9%、8%和43%,热变形温度提高了9.3℃。  相似文献   

6.
制备不同配比HDPE/PA6、UHMWPE/PA6和PTFE/PA6共混复合材料.对它们的吸水性和力学性能进行测试和分析,用显微镜对拉伸断面进行微观观察.结果表明:随共混材料含量增加,3种PA6基复合材料的吸水率比纯PA6明显减少,其中HDPE/PA6复合材料阻水性最好,其吸水率是纯PA6的25%;3种复合材料的拉伸强度和弯曲强度有不同程度的降低,冲击强度得到提高,HDPE质量含量为20%时HDPE/PA6的伸长率出现最大值,比纯PA6高出48%.增容剂对3种复合材料的相容性有一定的改善效果,HDPE/PA6改善效果最好.  相似文献   

7.
接枝聚丙烯增容改性PP/PA合金性能的研究   总被引:1,自引:0,他引:1  
赵娟  崔怡  陈晓丽 《塑料工业》2007,35(6):19-22
用PP接枝物增容PP/PA6共混体系,观察分析了共混合金的形态结构特点,测试了共混物的力学性能.结果表明:单独加入PP-g-MAH,力学性能均呈现先升后降的趋势,峰值时拉伸强度比未加接枝物时可提高20%,弯曲强度比未加接枝物时提高了54%,冲击强度比不添加接枝物时提高了3.6%.添加PP-g-MAH对不同比例PP/PA6共混物力学性能的影响不同,固定PP-g-MAH用量为4%,PA6质量分数为30%时共混物的综合力学性能达到最好.用PP-g-MAH和PP-g-GMA两种接枝物共同作为相容剂加入到PP/PA6共混物中比单独使用一种的效果要好,拉伸、弯曲和冲击强度都得到显著的提高.由共混物的SEM照片可以看到,PP-g-MAH使分散相的粒径变小,分布均匀,界面相互作用加强,所以是PP/PA6共混物的有效增容剂.  相似文献   

8.
制备了3种增容剂增容的尼龙(PA6)/高密度聚乙烯(PE-HD)共混物,对其力学性能、吸水性、表面疏水性进行了测试,用体视显微镜对共混物拉伸断面和冲击断面进行观察。结果表明,HD800E增容的PA6/PE-HD力学性能较好,特别是其断裂伸长率和冲击强度较大,相对于纯PA6,分别提高105.3%和36.9%,3种增容剂均能改善PA6的吸水性能和表面疏水性,其中,HD800E增容的PA6/PE-HD的饱和吸水率较小,为纯PA6的46.2%。  相似文献   

9.
余晓磊  徐长福  王鑫  周为夷  彭少贤  赵西坡 《塑料》2020,49(3):28-31,35
由于聚乳酸(PLA)与尼龙11(PA11)的相容性较差,因此,利用熔融接枝法制备了PLA与甲基丙烯酸缩水甘油酯(GMA)的接枝物PLA-g-GMA,并充当共混物的增容剂。在共混的过程中,利用增容剂原位反应性,增容PLA与PA11的共混体系。对共混物进行力学性能测试,结果表明,在没有添加增容剂的条件下,共混物的力学性能较差;随着接枝物的加入,共混物的力学性能显著提高。在PLA/PA11(80/20)组分中,当增容剂的含量达到20%时,共混物的断裂伸长率和拉伸强度均达到了最大值分别为281. 14%、53. 16 MPa,且材料抗冲击性能也有一定的改善,与纯PLA相比,增加了132%。  相似文献   

10.
通过挤出共混法制备了CF/PA6/PP-g-MAH和CF/PA6/SMA复合材料。采用SEM、DSC、DMA及力学性能测试,研究了PP-g-MAH和SMA对CF/PA6(5/95)共混物的微观形态、结晶行为及力学性能的影响。结果表明:2种相容剂对CF/PA6共混物都有明显的增容作用,其中SMA的增容效果较好;共混物的拉伸强度、冲击强度、弯曲性能及储存模量显著提高,玻璃化转变温度向高温区移动;SMA和PP-g-MAH均能促进CF对PA6基体的异相成核作用。  相似文献   

11.
研究了PA6/HDPE、PA6/HDPE/EVA共混物的密度、热性能和力学性能。PA6/HDPE/EVA三元共混物的力学性能比PA6/HDPE二元共混物有明显提高。对于拉伸强度,EVA的最佳含量在2~4份。冲击强度随EVA含量的增加而提高,EVA的含量小于5份时,对共混物的硬度几乎没有影响。  相似文献   

12.
The effects of multiple injection molding cycles on the chemical and mechanical properties of PA6/ABS and PA6/PA66/ABS blends are investigated. The chemical structures of both PA6/ABS binary and PA6/PA66/ABS ternary blends do not alter after recycling process. For PA6/ABS binary blend, it is found that the tensile strength, strain at break, elastic modulus, impact strength, flexural strength, and modulus of recycled blend decrease by 6.49%, 15.19%, 21.00%, 9.41%, 7.09%, and 8.25%, respectively, while MFI increases by 23.59% as compared with the virgin blend. After five recycling process for PA6/PA66/ABS ternary blend, the tensile strength, strain at break, and impact strength of recycled blend decrease by 18.00%, 50.80%, and 87.27%, respectively. However, flexural strength and modulus of PA6/PA66/ABS blend increase slightly. For virgin PA6/PA66/ABS blend, MFI value was 7.7 g/10 min and with recycling this value showed an important increase to 31.56 g/10 min after five cycles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40810.  相似文献   

13.
PA6含量对PVC/PA6共混物形态结构与力学性能的影响   总被引:1,自引:0,他引:1  
以EVA-g-MAH为相容剂,将PVC与自制的低熔点PA6共混制备了PVC/PA6共混物。通过扫描电子显微镜(SEM)和力学性能测试研究了PA6含量对PVC/PA6共混物形态结构及力学性能的影响。SEM分析结果显示:随着PA6含量的增加,PVC/PA6共混物的分散相尺寸逐渐增大,当PA6含量为10%时,共混物中分散相的分散尺寸最小为1μm;当PA6含量为50%时,共混物为两相共连续结构;当PA6含量为60%时,共混物中PA6为连续相,PVC为分散相。力学性能测试结果表明:当PA6含量为10%时,共混物的缺口冲击强度和拉伸强度都较PVC有明显提高,分别提高了约50%与30%,达到了6.29kJ/m2和60MPa。采用差示扫描量热仪(DSC)研究了PVC/PA6共混物的结晶温度,检测结果显示:PVC/PA6共混物呈现非晶结构。  相似文献   

14.
介绍了不同环氧改性剂对聚酰胺6(PA6)/乙烯?乙烯醇共聚物(EVOH)共混物的拉伸性能、流变性能、结晶性能的影响,并研究了甲基丙烯酸缩水甘油酯(GMA)与共混物的反应机理.使用转矩测试、红外光谱、氢核磁共振、拉伸测试、旋转流变测试和差示扫描量热法对共混物进行了表征.结果表明,随着改性剂环氧值的增加,共混物的共混转矩、...  相似文献   

15.
采用熔融挤出——热拉伸——牵引拉伸制备了HDPE/PA6原位成纤增强复合材料,通过SEM分析了分散相PA6含量对其在基体中的形态及分布的影响;讨论了两种加工方式条件下分散相PA6含量对复合材料拉伸性能和冲击韧性的影响以及加工方式对复合体系力学性能的影响。结果表明:在原位成纤增强复合材料中存在直径为2~5 μm的纤维,当HDPE/PA6质量比为85/15时,微纤直径约为3 μm,此时,与普通共混复合材料相比,原位成纤增强复合材料的拉伸强度提高了6.9%,拉伸模量提高了14.8%,冲击强度提高10.03%。  相似文献   

16.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
以马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂,回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,动态硫化热塑性弹性体(TPV)为增韧材料,制备了rPET/TPV/PP-g-MAH共混物。用SEM、DMA及DSC分析了TPV及PP-g-MAH对rPET断面结构、储能模量和结晶性能的影响,并测试了共混物的力学性能。结果表明:加入9.95%TPV后,rPET/TPV共混物的熔融温度下降了2.33℃,结晶温度提高了2.82℃,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度略有下降;加入PP-g-MAH后,TPV球状粒子嵌入rPET基体材料中,共混物的相容性提高,储能模量明显增大,刚性增强,弯曲强度和拉伸强度有所提高;与纯rPET相比,含1.8%PP-g-MAH的rPET/TPV/PP-g-MAH共混物的断裂伸长率提高了129.06%,缺口冲击强度提高了47.02%。  相似文献   

18.
The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high‐density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle‐length, randomly oriented bristles (MRB), or non‐oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non‐fibrous composite. It was concluded that the in‐situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
煤矸石填充聚酰胺6复合材料的结构与性能研究   总被引:3,自引:0,他引:3  
采用熔融共混法制备了聚酰胺6/煤矸石复合材料,研究了复合材料的力学性能、微观结构、结晶行为和流变性能。结果表明:煤矸石的加入使聚酰胺6的的拉伸强度、弹性模量、弯曲强度和弯曲模量分别增加了约53.8%、66.1%、37.1%和63.4%,而冲击韧性基本保持,煤矸石最佳填充量为25%;煤矸石在聚酰胺6基体中分散均匀,复合材料具有韧性断裂特征;煤矸石使聚酰胺6的结晶温度由187.0℃升高到191.3℃,过冷度由33.6℃降至18.9℃,结晶温度范围变窄,即煤矸石提高了聚酰胺6的结晶速率,对聚酰胺6具有异相成核作用;在所研究的剪切速率范围内,聚酰胺6及其复合材料的流变行为表现为假塑性,煤矸石的加入使非牛顿指数减小,聚酰胺6对剪切敏感性下降。  相似文献   

20.
The mechanical properties of high-density polyethylene (HDPE)-rich i-PP/HDPE blends were studied. Two grades of HDPE were investigated, one with a melt viscosity close to that of the polypropylene (PP) and the other having a much lower melt viscosity. Compatibilization of the 10/90 i-PP/HDPE blend with three copolymers (an ethylene/propylene/diene [EPDM] copolymer and two ethylene/vinylacetate [EVA] copolymers, differing in their VA content) was also investigated. Blends of PP with the low melt viscosity HDPE displayed poor mechanical properties. It was not possible to improve these properties sufficiently with EPDM or EVA. In the case where viscosity matching was achieved between PP and HDPE, addition of i-PP (up to 30%) to HDPE resulted in a large drop in the impact strength of the blends, compared to that of the neat HDPE. A large drop (>50%) was also observed in the ultimate tensile elongation. However, the flexural modulus, yield stress, and ultimate tensile strength all increased with the introduction of i-PP into HDPE. Modification of these blends with an EPDM resulted in the return of all properties to values very close to those of the neat HDPE. The ultimate tensile elongation of the EPDM-modified i-PP/HDPE blend even exceeded that of the virgin HDPE. It was also found that although EVAs can be used to compatibilize these blends these additives were not as effective as was the EPDM. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号