共查询到18条相似文献,搜索用时 58 毫秒
1.
提出了一种基于分数阶傅里叶变换(Fractional Fourier Transform, FRFT)的邻近阶比分离方法。根据变速器输入轴转速信号及传动比确定FRFT最佳阶次,对变速器升速过程振动信号进行最佳阶次FRFT,在该分数阶域分离邻近阶比分量,并对分离出的单分量信号进行阶比分析。试验结果表明,根据转速信号确定FRFT最佳阶次,准确、快速、鲁棒性好,并具有自适应性;最佳阶次的FRFT能准确分离提取邻近阶比分量,对分离出的目标阶比分量进行单分量分析,能有效解决邻近阶比胶合问题。 相似文献
2.
3.
准确估计水声信道参数,对提高通信系统的性能有着重要的意义。Chirp脉冲有良好的相关性,常被用作信道探测信号。鉴于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对chirp类信号的处理特性,用chirp信号作为测量信号,FRFT作为后端处理技术,可以得到很好的处理效果。研究了基于FRFT的水声信道多途时延和多普勒频偏参数估计的原理和方法,该方法通过发射具有正、负调频斜率的组合线性调频信号,在接收端根据FRFT幅值输出的峰值位置估计信道参数。仿真结果表明,此方法计算量与FFT相当,且有较高的估计精度。 相似文献
4.
分数阶傅里叶变换是信号处理与分析的一个重要工具,通过将图像信号投影到不同角度的时频平面可以表征图像的内容信息,其在人脸识别任务中显示出很好的性能。但是分数阶傅里叶变换存在阶次选择的问题,即在没有先验知识的情况下,无法预先知道哪一个阶次的分数阶傅里叶变换域特征具有最好的判别性能。受机器学习中的多核学习理论启发,本文探讨了分数阶傅里叶变换中阶次选择问题和多核学习理论的联系,通过将不同阶次的分数阶傅里叶变化域特征的线性核矩阵作为多核学习网络的输入,结合支持向量机,交替优化更新多核网络中的系数和支持向量机的参数,自动学习多阶次分数阶傅里叶变换域特征的系数,实现多阶次分数阶傅里叶变换域特征的融合。将所提算法应用到人脸识别任务中,在ORL人脸数据集和扩展YaleB人脸数据集上的实验显示所提算法的可行性和有效性。 相似文献
5.
针对强混响背景下经典的最小均方误差(Least Mean Square,LMS)滤波算法难以有效地实现信混分离的问题,提出一种基于分数阶傅里叶变换的自适应LMS算法。首先将混响信号和自适应LMS滤波算法中的参考信号进行分数阶傅里叶变换,寻找最优变换域,并在分数阶域进行带通滤波,然后将得到的信号进行分数阶傅里叶反变换,最后将基于正态分布曲线的变步长LMS算法应用于此混响条件下进行滤波。仿真和海试数据验证结果表明,在信混比为0 dB的情况下,算法仍可以有效地滤除混响,使信混比提高6dB。 相似文献
6.
本文在分数阶Fourier变换原理的基础上,提出了一种基于分数阶傅里叶变换的线性调频(LFM)信号的滤波方法,利用该变换等同于对信号在时频平面进行旋转,将混迭有噪声的信号以特定的旋转角作分数阶傅里叶变换,使得信号与噪声在变换域中的交迭达到最小:然后通过窄带通滤波器对LFM信号进行抽取,再经过分数阶傅里叶反变换,恢复出原信号。 相似文献
7.
8.
提出了一种分数阶聚能带时频累加谱方法,快速实现长数据的时频分析,突出目标分量,用于提取变速器急加速过程微弱故障特征。根据变速器输入轴转速信号及传动比确定分数阶傅里叶变换(Fractional Fourier Transform, FRFT)最佳阶次,对变速器急加速过程振动信号进行最佳阶次FRFT,根据FRFT模值谱确定聚能带,计算分数阶聚能带时频累加谱,通过对比多组正常和故障数据的分数阶聚能带时频累加谱结果和阶比谱结果,验证该方法的有效性。试验结果表明:根据转速信号能快速、准确确定FRFT最佳阶次;选取聚能带内的FRFT结果进行时频分析,计算量小,分辨率高,分数阶聚能带时频累加谱具有聚焦和局部放大的特点, 能很好地突出目标分量,抑噪噪声,是提取变速器急加速过程信号微弱故障特征的有效方法。 相似文献
9.
10.
对一阶自傅里叶光孤子混合对信号在光纤中的演变和传输进行了数值模拟研究.所用方法为利用分步傅立叶变换方法数值求解非线性薛定谔方程,文中并证明了算法内部不存在理论误差.结果表明:一阶孤子与微扰的一阶孤子的相互作用以及一阶孤子对的初值稳定性依赖于起始输入的不同结构形式.一阶自傅里叶孤子混合对中的相互作用表现不同于一阶标准孤子混合对,它类似于二阶或准二阶孤子的相互作用特性;孤子相互作用特性不足以用孤子的阶去区分或分类. 相似文献
11.
M周期分数傅里叶变换的光栅信号去噪方法 总被引:1,自引:0,他引:1
用矩阵方法离散地实现了任意M周期的分数傅里叶变换(FRFT),它可实现变换级次及周期的自由选择。根据相应的噪声频谱,选取适当的级次及周期,可使FRFT构造一个极窄的带阻滤波器,将其中心频率对准相应噪声的窄谱,便可滤除与理想信号频谱重叠部分的噪声分量,同时保持信号分量。在实验中,用矩阵方法实现的FRFT对所测光栅信号进行了去噪处理,并与传统的傅里叶与小波分析去噪方法进行了对比,结果表明,只要选取适当的级次和周期(α=0.545,Μ=5)就可获得理想的去噪效果。 相似文献
12.
爆破振动信号是典型的短时非平稳随机信号。应用多分辨率特点的小波包变换对爆破振动信号进行多层分解,得到信号能量分布的细节信息。根据建立在概率统计基础上的信息熵概念,推导得到爆破振动信号能量熵计算方法。分析了4种类型爆破振动信号的能量熵,熵值由大到小为:隧道爆破、管道爆炸、台阶爆破、塌落振动。结果表明,能量熵能够反映不同类型爆破对振动信号的影响。提出将能量熵作为爆破振动信号的新特征量,为爆破振动信号特征提取、不同爆破类型振动信号识别和爆破振动预测提供一种新思路。 相似文献
13.
14.
基于傅里叶变换的正弦信号源波形失真评价方法 总被引:8,自引:1,他引:8
介绍了一种直接利用经典傅里叶变换技术评价正弦信号源波形总失真度的过程和方法。借助于周期的精确测量技术,实现基波参数的精确测量。用时域能量方式计算失真,其内涵全面,包括了谐波、杂波、噪声等全部影响,并对测量系统本身的影响进行了补偿。同时,对不同条件下的失真度测量误差进行了分析,用一组仿真数据的实验结果,验证了正确性及可行性。所述方法可用于正弦信号波形失真度的精确测量和计量校准,尤其适用于大失真度的测量。 相似文献
15.
16.
17.
18.
飞机颤振试飞试验信号的广义时频滤波 总被引:1,自引:0,他引:1
针对飞机颤振试飞试验信号噪声过大的问题,提出了一种广义时频域滤波算法。算法采用分数阶傅里叶变换对线性扫频激励及其响应信号进行广义时频分析,利用该类信号在分数阶傅里叶域内的聚焦特性,有效提取真实响应信号,达到信噪分离的目的。给出了具体的滤波算法,并将其应用于仿真算例和实际试飞数据,结果表明该方法可显著提高信号的信噪比。 相似文献