共查询到18条相似文献,搜索用时 140 毫秒
1.
文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一。传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较。提出了多类支持向量机文本分类中存在的问题和今后的发展。 相似文献
2.
支持向量机的中文文本分类研究 总被引:9,自引:0,他引:9
支持向量机是一种基于统计学习理论的新型机器学习方法,在文本分类领域取得了很好的效果。使用支持向量机进行了文本分类的研究,实现了一个中文文本自动分类系统,并给出了实验结果。 相似文献
3.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法.再通过对不同方法的支持向量札分类算法的比较,进行一个总体酌描述和概括开对未来发展发向做了一个预测。 相似文献
4.
支持向量机是在统计学习理论基础上发展起来的新一代学习算法,适宜构造高维有限样本模型,具有很好的分类精度和泛化性能。文中介绍了中文文本分类过程,将支持向量机应用于中文文本分类模型中,对分类器参数选择进行了分析和讨论。实验分析表明,该系统在较小训练集条件下可以取得较好的分类效果。 相似文献
5.
支持向量机是在统计学习理论基础上发展起来的新一代学习算法,适宜构造高维有限样本模型,具有很好的分类精度和泛化性能。文中介绍了中文文本分类过程,将支持向量机应用于中文文本分类模型中,对分类器参数选择进行了分析和讨论。实验分析表明,该系统在较小训练集条件下可以取得较好的分类效果。 相似文献
6.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法,再通过对不同方法的支持向量机分类算法的比较,进行一个总体的描述和概括。并对未来发展发向做了一个预测。 相似文献
7.
针对短文本具有特征稀疏、不规范、主题不明确等特点,提出一种有效的基于支持向量机的短文本分类方法。由于汉语中依存语法分析准确率和时间效率不高的问题,针对客户文本咨询的特点,在对短文本分类时,本文并未对句子进行依存语法的分析,而是主要使用句法特征进行分析,找出文本的子串和子序列形成候选特征集,之后利用信息增益、互信息、卡方统计3种特征选择方法进行有效特征选择,最后采用支持向量机方法进行文本分类。将本文所提的模型应用于一组真实数据,实验结果表明,平均正确率可达到84.19%,从而验证该分类方法的鲁棒性和有效性。 相似文献
8.
基于支持向量机的文本兼类标注 总被引:5,自引:1,他引:5
该文分析了现有多类别支持向量机分类器的特点及DAGSVM的优势,并结合模糊技术改造DAGSVM使之能进行兼类标注的多类别分类。改进后的FDAGSVM采用模糊决策面代替了DAGSVM的分明决策面,使判决过程适应兼类标注的要求,克服了传统的多类别分类支持向量机必然将样本分入某一类别的不足。基准数据的兼类标注多类别分类试验表明,FDAGSVM在文本的兼类标注分类中表现出较好的性能。 相似文献
9.
SVM在文本分类中的应用是近年来文本分类领域重要的进展之一。许多实验表明,SVM在文本分类中比其他的机器学习算法表现出更高的分类精度,但在大规模数据上的收敛速度较慢,成为SVM在实际应用中的一大缺点。球向量机是一种比SVM更快的机器学习方法。本文将BVM应用于文本分类。实验表明,BVM在文本分类中的应用具有与SVM相当的精 度,而且比SVM有更少的训练时间。 相似文献
10.
11.
12.
提出一种2_a_2支持向量机多类分类新方法,它的优点是充分利用了每个子分类器的识别结果,将最少数量的子分类器组合在一起,实现多类分类。通过对CMU表情库4种不同表情图像的分类识别实验表明,该算法能明显提高识别速率。将该方法应用于解决更多类的分类问题时,同样体现出优越性。 相似文献
13.
该文提出了一种基于偏最小二乘(PLS)的支持向量机(SVM)多分类方法,该算法利用偏最小二乘思想对样本进行预处理,消除了样本属性之间的相关性,而且得到的综合属性与类信息的相关程度达到最大。通过实验可以看出,该方法不仅可以减少用支持向量机进行分类过程中的支持向量数目,而且当样本属性较多时,可以提高一定的识别率。 相似文献
14.
基于模糊支持向量机的步态识别 总被引:2,自引:0,他引:2
提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM,因此,选取正确的模糊隶属度确定方法是FSVM能否成功应用于步态识别的关键。 相似文献
15.
目前使用的已有SVM核函数,在分类中不能逼近某一L2(R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。 相似文献
16.
基于邮件内容的过滤是当前解决垃圾邮件问题的主流技术之一。针对垃圾邮件过滤本质是分类问题,提出了一种基于支持向量机对垃圾邮件过滤的方法,并且将SMO分类算法结合到垃圾邮件分类中。通过实验,SMO算法能够取得较好的分类效果,缩短了支持向量机分类器的分类时间。 相似文献
17.
18.
为了进一步提高支持向量机分类的准确性和泛化能力,提出一种基于支持向量机的改进二叉树分类算法.首先介绍支持向量机的基本原理,总结了常见的多分类器分类算法及其特点,结合现有分类算法的优点,为分类器引入了不同的权值,提出二叉树改进分类算法,有效避免了常用分类算法不足.通过仿真实验,与典型的多类分类算法对比,验证该算法的有效性,为多类分类预测研究提供了一条有效的途径. 相似文献