首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采有向向双螺杆杆挤出机制备了不同组成的PA1010/PP及PA1010/PP-g-ATBS/PP的共混物。采用聚丙烯接枝丙烯酰胺基甲基丙烷磺酸共聚物(PP-g-ATBS)作为增容剂来研究对PA1010/PP共混体系形态与力学性能的影响,研究不同增容剂含量对PA1010/PP共混物的力学性能,形态结构的影响。  相似文献   

2.
卢秀萍  韩英素 《中国塑料》1999,13(12):24-28
系统研究了不同组成及配比的马来酸酐接枝聚丙烯(MAH-g-PP)及其用量对聚丙烯(PP)与乙烯-乙烯醇共聚物(EVAL)的共混体系(PP/EVAL)力学性能借用Brabender塑化仪测试了PP/EVAL/MAH-g-PP共混体系的加工性能。结果表明,MAH-g-P接枝物对PP/EVAL共混体系有较好的增容作用,适量加入,可使PP/EVAL共混体系的力学性能明显提高,而加工性能基本不变。  相似文献   

3.
研究了在熔融状态下,苯乙烯(St)与聚丙烯(PP)的接枝共聚反应。此反应在密炼机中进行。由红外光谱确认聚丙烯接枝苯乙烯(PP-g-PS)的生成。以二甲苯作溶剂,甲乙酮作沉淀剂,用溶解-沉淀法测定接校率。通过差示扫描量热计(DSC)测定结晶温度(Tc)和结晶度。将所制备的PP-g-PS接枝共聚物掺混进PP/SBS合金中,在PP/SBS/PP-g-PS(80:10:10)的配比下进行共混,结果表明其在室温和-25℃之下的冲击强度均比PP/SBS有明显的提高。通过动态力学测试表明接枝共聚物提高了PP与SBS的相容性。  相似文献   

4.
国产聚丙烯的增韧改性研究   总被引:17,自引:0,他引:17  
本文采用共混的方法对PP进行增韧改性,分别用苯乙烯与丁二烯嵌段共聚物(SBS)、三元乙丙橡胶(EPDM)和乙烯与聚烯烃共聚物(POE)作为增韧剂与PP组成二元及三元共混体系,测试了各共混体系的力学性能,并确定最佳的增韧剂和具有较好的协同效应的共混体系,试验结果表明:POE为PP的最佳增韧剂,PP/EPDM/SBS三元共混体系具有较好的协同效应。  相似文献   

5.
本文研究PP/GF(玻纤增强聚丙烯)的加工过程中,添加PA66(尼龙)、MPP(PP-g-MAH)进一步促进GF对PP的增强作用。考察了MPP对PP/PA66共混物的增容作用,PA66、MPP的组成配比对PP/GF增强塑料力学性能和微观结构的影响。结果表明:PA66、MPP的组成比对PP/GF的力学性能影响较大;较佳配比的PA66、MPP,可大幅度地提高增强塑料的力学性能。  相似文献   

6.
热致性液晶共聚酯/聚丙烯共混物   总被引:4,自引:0,他引:4  
通过熔融共混制备了不同配比的(PHB/PET)/PP共混物,研究表明,共混物的弯曲弹性模量,弯曲强度及拉伸强度均比PP有所提高,当液晶含量为15%,PP-g-MAH为20%时,(PHB/PET)(PP-g-MAH)/PP三元共混物弯曲弹性模量最大,PP-g-MAH作为两相界面相容剂,改善了两相间的亲合性。DSC分析表明,共混物中PP相的结晶温度有较大幅度的提高,(PHB/PET)共聚酯起了PP结晶  相似文献   

7.
PP-g-DBM增容PP/PA6共混物的性能研究   总被引:5,自引:2,他引:3  
采用PP-g-DBM增容PP/PA6共混物,研究了增容共混物的力学性能和流变行为。结果表明,PP-g-DBM能改善PP/PA6共混物的相容性,显著提高共混物的力学性能;增容共混物的假塑性行为变强,粘流活化能增加熔体流动速率下降。  相似文献   

8.
EPDM/PP热塑性弹性体的制备及性能研究   总被引:3,自引:0,他引:3  
以充油三元乙丙橡胶(EPDM),粉状聚丙烯(PP)、超细活性滑石粉为基本材料,采用动态硫化法在单螺杆挤出机组上制备EPDM/PP共混型热塑性弹性体(TPV);用力学性能试验及动态热流变仪方法测定了EPDM/PP-TPV的性能。结果表明,当EPDM充油量为20%-30%时,EPDM与PP熔融共混效果好;DCP用量为1.2%-1.5%时,EPDM/PP共混体系达到完全动态硫化;超细滑石粉最佳添加量为1  相似文献   

9.
PP/EVA-15共混物的研究   总被引:5,自引:0,他引:5  
应用SEM和力学性能测试研究了PP/EVA-15共混物原料配比、工艺条件和微观结构形态对材料性能的影响,对共混物的增韧机理进行了分析。与弹性体(EPDM)改性PP所作的比较显示,EVA-15对PP有良好的改性效果,其综合性能优于PP/EPDM共混物。  相似文献   

10.
本文以EPDM为主增韧剂,SBS为辅助增韧剂,用共混改性的方法研究了共混材料。过氧化苯甲酰(BPO)作交联剂,使橡胶相内部形成部分交联结构,使材料的力学性能得到改善;通过在材料中填充适量的滑石粉,材料的弯曲强度能够得到保证;并且还讨论了PP/EPDM/SBS的不同配比获得的材料性能基本接近汽车保险杠的技术指标。  相似文献   

11.
The rheological, thermal, and mechanical properties of blends consisting of a linear high melt flow rate polypropylene (PP) and two branched PPs are characterized in detail. Blends containing branched PPs display evidence of miscibility in the melt state and exhibit high melt elasticity together with significant strain hardening in extensional deformation while retaining good flow properties. Out of the two blend systems examined the blends containing linear and branched PPs with similar melt flow rates have better mechanical properties, higher crystallization temperatures, and higher crystallinities. POLYM. ENG. SCI., 47:1133–1140, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Polypropylene (PP)‐clay composites were prepared by melt mixing in an intensive mixer. Three grades of PPs with different melt viscosities were employed to investigate mixing characteristics and phase structure of the composites with various clays that belong to organically modified montmorillonite (org‐MMT). Depending on the matrix viscosity and nature of the organic layer in MMT, significant variations In the phase structure of the composites were found. In addition to the simple combination of PP and clay, various functionalized PPs were also incorporated in an attempt to enhance thermodynamic interaction between the org‐MMT and PP matrix. Major interest was focused on the effect of varying thermodynamic affinity between the components, on the phase evolution and mechanical properties of the composites. Within the available range of maleic anhydride (MA) content in PP, it was found that optimum content of the functional group exists, which balances favorable interaction with org MMT and tolerable homogeneity with PP matrix. Along with keeping the optimum MA content, it was also important to use a low viscosity PP matrix to achieve a mere random array of layered silicates. The observed phase structure was interpreted by using a model based on self consistent field theory.  相似文献   

13.
Polypropylene-based compounds are increasingly attractive because of low cost, processability, and good balance of properties. In recent years, metallocene ethylene-octene copolymers have started displacing EPR and EPDM as an impact modifier for PP. This study examines the effect of compounding conditions and composition on the properties of talc/ethylene-octene copolymer/PP compounds. The mechanical properties of the compounds were not significantly affected by the mixing conditions on a laboratory twin screw extruder. The use of 30 wt% of talc provided a twofold increase in tensile modulus compared with pure PP. Impact resistance of filled and unfilled compounds was found to increase rapidly once the copolymer concentration reached around 20 wt% based on the polymer phase. Modulus and tensile strength decreased linearly with copolymer concentration. Four different commercial maleic anhydride-grafted PPs were tested as interfacial modifiers. In the best cases, a slight tensile strength increase was observed when using between 2 and 10 wt% of modified PP.  相似文献   

14.
高聚合度PVC/PP/相容剂共混改性体系研究   总被引:4,自引:1,他引:4  
窦强  郑昌仁 《中国塑料》1996,10(6):37-42
采用CPE、ABS和PP溶体接枝物等作相容剂恶性状聚合物PVC/PP共混物的相容性,并考察共混比、相容剂用量、增塑剂用量、EPDM用量、相容剂种类对高聚合度PVC/PP共混物力学性能和微观形态的影响。  相似文献   

15.
Long‐chain branching polypropylene (LCB‐PP) was achieved by reactive extrusion in the presence of bifunctional monomer [1,6‐hexanediol diarylate (HDDA)] and peroxide of dicumyl peroxide (DCP). Influences of HDDA and DCP concentrations on the branching efficiency were comparatively evaluated. Fourier transformed infrared spectroscopy (FTIR) results indicated that the grafting reaction took place, and HDDA has been grafted on PP skeleton. In comparison with initial PP, some modified samples showed lower melt flow index because of a large number of LCB in their skeleton. Several rheology plots were used to investigate the rheological properties of the initial PP and modified PPs, and the rheological characteristics confirmed the LCB in modified PPs skeleton. DSC results showed that the crystallization temperatures of modified PPs were higher than those of initial PP and degraded PP, suggesting that the modified PPs had long‐chain branched structure. The contrastive investigation in the rheology of modified PPs suggested that proper concentrations of HDDA and DCP were more beneficial to producing LCB during reactive extrusion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Polyester polyol (PP)‐based polyurethanes (PUs) consisting of two difunctional acids [1,4‐cyclohexanedicarboxylic acid (CHDA) and 1,6‐adipic acid (AA)] and also two diols [1,4‐cyclohexanedimethanol (CHDM) and 1,6‐hexanediol (HDO)] were synthesized by a two‐step procedure with a variable feed ratio of CHDA to AA but fixed ratio of CHDM and HDO. The prepared PPs and/or PUs were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, and atomic force microscopy. The effects of difunctional acids on the thermal, mechanical, and dynamic mechanical thermal properties of PPs or PU films were investigated by thermogravimetry analysis, differential thermogravimetry and dynamic mechanical thermal analysis. The results show that PP exhibits a lowest viscosity with the mole fraction of CHDA and AA at 3 : 7 whereas it delivers a lowest melting point with the mole fraction at 9 : 1. After PPs being cross‐linked by isocyanate trimers, the impact resistance, shear strength and glass transition temperature increase the mixed‐acid formulations with increasing the content of CHDA. In detail, the resultant PU almost simultaneously exhibits the best mechanical and thermal properties when the mole fraction of CHDA and AA is kept constant at 9 : 1, thus giving rise to a high glass transition temperature of 56.4°C and a onset decomposition temperature of 350°C, and also delivering a balanced toughness and hardness with an impact resistance of 100 J/g and storage modulus as high as 109 Pa. This path for synthesis of PP‐based PU provides a design tool for high performance polymer coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41246.  相似文献   

17.
Common linear polypropylene (PP) was modified by blending with polyamide 66 (PA66) under the act of compatibilizer in a twin-screw extruder in an attempt to improve the melt strength (MS) of PP. The MS of pure PP and modified PPs were measured by MS testing unit at three temperature of 190, 210, and 230 °C, and the MS improvement of PP was verified. The MS of the modified PPs increased with increasing the content of PA66. The steady- and dynamic-shear rheological behaviors of pure PP and modified PPs were investigated using a capillary rheometer and a parallel-plate rotating rheometer. The steady-shear rheological analysis results revealed that modified PPs had higher melt shear viscosity, stronger non-Newtonian behaviors, and higher zero shear-rate viscosity. The dynamic-shear rheological analysis showed modified PPs had higher melt complex modulus and smaller phase angle, which indicated that the melt viscosity and melt elasticity of PP were also enhanced. The modified PPs was characterized by DSC. DSC results revealed that the PA66 phase and PP phase of the modified PPs were in state of crystallization. The enhancement of MS, melt viscosity, and melt elasticity of modified PPs could be due to undisaggregated PA66 crystallization phase within the melt of PP blends.  相似文献   

18.
Measurement of between ethylene–propylene rubber (EPR) and polypropylene (PP) is an important research subject in the study of rubber toughened PP. When the ethylene content in EPR is low, the EPR and the PP phases become optically indistinguishable due to their similar refractive indexes, and thus the measurements of interface free energy by conventional methods are impossible. In this study, we devised a new experimental technique that enables measurement of the interface free energy between two polymers having similar refractive indexes. When small amount of inorganic additives are incorporated to the PP phase, interface between PP and EPR phases are clearly seen and the measurements become attainable. Using the suggested method, the interface free energy between EPR and PPs were obtained and presented. Four different PPs were investigated, homo PP and three random PPs that contain small amounts of ethylene unit ranging from 1 to 3 wt%. It was found that the interface free energy decrease as the ethylene content in the PPs increases and the effect of the ethylene content on the interface free energy is unexpectedly large.  相似文献   

19.
Recently, cellulose fiber–thermoplastic composites have played an important role in some applications. Plastics reinforced with cellulose and natural fibers have been widely studied. However, composites with regenerated cellulose have rarely been investigated. In this study, the lyocell fiber of Lenzing AG (cellulose II) and its raw material a bleached hardwood pulp (cellulose I) were used as reinforcement materials. The mechanical and thermal properties of polypropylene (PP) reinforced with pulp and lyocell fibers were characterized and compared with regard to the content of the fiber and the addition of maleated polypropylene (MAPP). PPs with cellulose I or II as a reinforcement material had similar mechanical properties. However, when MAPP was used as coupling agent, the mechanical properties of the composites were different. The crystallinity of the composites were determined by differential scanning calorimetry. Cellulose I (pulp) promoted the crystallization of PP, whereas cellulose II did not. MAPP reduced this effect in cellulose I fibers, but it induced crystallization when cellulose II (lyocell) was used as a reinforcement material. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 364–369, 2006  相似文献   

20.
Polyblends of nylon 6 and liquid crystalline polymer (LCP) (Vectra A 950) are immiscible and highly incompatible, with resultant poor interfacial adhesion, large phase domains, and poor mechanical properties. In the present work, compatibilizing strategies are put forward for blends containing nylon and LCP. Effects of three types of compatibilizers, including ionomer Zn–sulfonated polystyrene (SPS), reactive copolymer styrene–maleic anhydride (SMA), functional grafted copolymers—polypropylene grafted glycidyl methacrylate (PP‐g‐GMA) and polypropylene grafted maleic anhydride (PP‐g‐MAH)—are studied in the aspects of morphology and dynamic mechanical behavior. The addition of compatibilizers decreases the domain size of the dispersed phase and results in improved interfacial adhesion between LCP and matrix. The compatibilization mechanism is discussed by way of diffuse reflectance Fourier transform spectroscopy (DRIFT), showing the reaction between compatibilizers and matrix nylon 6. Mechanical properties are improved by good interfacial adhesion. The contribution of SMA to mechanical properties is more obvious than that of Zn‐SPS and grafted PPs used. The blending procedure is correlated with the improvement of mechanical properties by the addition of compatibilizer. Two‐step blending is demonstrated as an optimum method to obtain composites with better mechanical properties as a result of a greater chance for LCP to contact the compatibilizer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1452–1461, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号