首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.  相似文献   

2.
CH4/CO2 reforming over La2NiO4 and 10%NiO/CeO2–La2O3 catalysts under the condition of supersonic jet expansion was studied via direct monitoring of the reactants and products using the sensitive technique of cavity ring-down spectroscopy. Vibration–rotational absorption lines of CH4, H2O, CO2 and CO molecules were recorded in the near infrared spectral region. Our results indicated that La2NiO4 is superior to 10%NiO/CeO2–La2O3 in performance. In addition, we observed enhanced reverse-water-gas-shift reaction at augmented reaction temperature. The formation of reaction intermediates was also investigated by means of time-of-flight mass spectrometry and there was the detection of CHx+, OH+ and H+ species.  相似文献   

3.
Mixed oxides of the general formula La0.5SrxCeyFeOz were prepared by using the nitrate method and characterized by XRD and Mössbauer techniques. The crystal phases detected were perovskites LaFeO3 and SrFeO3−x and oxides -Fe2O3 and CeO2 depending on x and y values. The low surface area ceramic materials have been tested for the NO+CO and NO+CH4+O2 (“lean-NOx”) reactions in the temperature range 250–550°C. A noticeable enhancement in NO conversion was achieved by the substitution of La3+ cation at A-site with divalent Sr+2 and tetravalent Ce+4 cations. Comparison of the activity of the present and other perovskite-type materials has pointed out that the ability of the La0.5SrxCeyFeOz materials to reduce NO by CO or by CH4 under “lean-NOx” conditions is very satisfying. In particular, for the NO+CO reaction estimation of turnover frequencies (TOFs, s−1) at 300°C (based on NO chemisorption) revealed values comparable to Rh/-Al2O3 catalyst. This is an important result considering the current tendency for replacing the very active but expensive Rh and Pt metals. It was found that there is a direct correlation between the percentage of crystal phases containing iron in La0.5SrxCeyFeOz solids and their catalytic activity. O2 TPD (temperature-programmed desorption) and NO TPD studies confirmed that the catalytic activity for both tested reactions is related to the defect positions in the lattice of the catalysts (e.g., oxygen vacancies, cationic defects). Additionally, a remarkable oscillatory behavior during O2 TPD studies was observed for the La0.5Sr0.2Ce0.3FeOz and La0.5Sr0.5FeOz solids.  相似文献   

4.
Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na+ and MgO on the structure and CO2 adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5-1.5 mm exhibited an excellent capacity for CO2 adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm3∙mol1) to CaCO3 (36.9 cm3∙mol1) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO2 capture capacity (9.49 mmol∙g1), average adsorption rate (0.32 mmol∙g1∙min1) and conversion rate of CaO (74.83%) after 30 cycles.  相似文献   

5.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   

6.
In this work, the detailed oxygen reduction reaction (ORR) catalytic performance of M-N4xOx (M= Fe, Co, and Ni; x = 1–4) has been explored via the detailed density functional theory method. The results suggest that the formation energy of M-N4xOx shows a good linear relationship with the number of doped O atoms. The adsorption manner of O2 on M-N4xOx changed from end-on (x = 1 and 2) to side-on (x = 3 and 4), and the adsorption strength gradually increased. Based on the results for binding strength of ORR intermediates and the Gibbs free energy of ORR steps on the studied catalysts, we screened out two highly active ORR catalysts, namely Co-N3O1 and Ni-N2O2, which possess very small overpotentials of 0.27 and 0.32 V, respectively. Such activities are higher than the precious Pt catalyst. Electronic structure analysis reveals one of the reasons for the higher activity of Co-N3O1 and Ni-N2O2 is that they have small energy gaps and moderate highest occupied molecular orbital energy levels. Furthermore, the results of the density of states reveal that the O doping can improve the electronic structure of the original catalyst to tune the adsorption of the ORR intermediates.  相似文献   

7.
In this contribution, a commercial spherical SiO2 was modified with different amounts of La2O3, and used as the support of Ni catalysts for autothermal reforming of methane in a fluidized-bed reactor. Nitrogen adsorption, XRD and H2-TPR analysis indicated that La2O3-modified SiO2 had higher surface area, strengthened interaction between Ni and support, and improved dispersion of Ni. CO2-TPD found that La2O3 increased the alkalescence of SiO2 and improved the activation of CO2. Coking reaction (via both temperature-programmed surface reaction of CH4 (CH4-TPSR) and pulse decomposition of CH4) disclosed that La2O3 reduced the dehydrogenation ability of Ni. CO2-TPO, O2-TPO (followed after CH4-TPSR) confirmed that only part amount of carbon species derived from methane decomposition could be removed by CO2, and O2 in feed played a crucial role for the gasification of the inactive surface carbons. Ni/xLa2O3-SiO2 (x = 10, 15, 30) possessed high activity and excellent stability for autothermal reforming of methane in a fluidized-bed reactor.  相似文献   

8.
Cu3(BTC)2, a common type of metal organic framework (MOF), was synthesized through electrochemical route for CO2 capture and its separation from N2. Taguchi method was employed for optimization of key parameters affecting the synthesis of Cu3(BTC)2. The results indicated that the optimum synthesis conditions with the highest CO2 selectivity can be obtained using 1 g of ligand, applied voltage of 25 V, synthesis time of 2 h, and electrode length of 3 cm. The single gas sorption capacity of the synthetized microstructure Cu3(BTC)2 for CO2 (at 298 K and 1 bar) was a considerable value of 4.40 mmol·g−1. The isosteric heat of adsorption of both gases was calculated by inserting temperature-dependent form of Langmuir isotherm model in the Clausius-Clapeyron equation. The adsorption of CO2/N2 binary mixture with a concentration ratio of 15/85 vol-% was also studied experimentally and the result was in a good agreement with the predicted value of IAST method. Moreover, Cu3(BTC)2 showed no considerable loss in CO2 adsorption after six sequential cycles. In addition, artificial neural networks (ANNs) were also applied to predict the separation behavior of CO2/N2 mixture by MOFs and the results revealed that ANNs could serve as an appropriate tool to predict the adsorptive selectivity of the binary gas mixture in the absence of experimental data.  相似文献   

9.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture.  相似文献   

10.
In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72– 3078.99 m2·g1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.  相似文献   

11.
The decomposition behavior and mechanism of calcium sulfate in O2/CO2 pulverized coal combustion were studied in an entrained flow reactor. A reaction rate expression correlating the influence of various factors was proposed for CaS04 decomposition and it is able to predict CaS04 decomposition satisfactorily. Under the conditions investigated, the decomposition of CaS04 was found to be a regime of chemically controlled shrinking core reaction. A CO2-rich atmosphere enhances CaSO4 decomposition in absence of oxygen. CaSO4 particles have catalytic effect on formation of CO from CO2. A high SO2 concentration inhibits CaSO4 decomposition. The kinetics of CaSO4decomposition has obvious dependence on experimental facilities and conditions, whereas the activation energy has much lower dependence. The kinetics derived in this work is more appropriate for investigating desulfurization in O2/CO2 pulverized coal combustion because an entrained flow reactor has a much closer condition to that in O2/CO2 pulverized coal combustion than a TGA.  相似文献   

12.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

13.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

14.
The effects of Zr doping on the existence of Cu and the catalytic performance of Ce0.7−xZrxCu0.3O2 for CO oxidation were investigated. The characterization results showed that all samples have a cubic structure, and a small amount of Zr doping facilitates Cu2+ ions entering the CeO2 lattice, but excessive Zr doping leads to the formation of surface CuO crystals again. Thus, the number of oxygen vacancies caused by the Cu2+ entering the lattice (e.g., Cu2+–□–Ce4+; □: oxygen vacancy), and the amount of reducible copper species caused by CuO crystals, varies with the Zr doping. Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O2 and CO, respectively, and the cooperative effects between them accounted for the high CO oxidation activity. Thus, the samples x = 0.1 and 0.3, which possessed the most oxygen vacancy or reducible copper species, showed the best activity for CO oxidation, with full CO conversion obtained at 110 °C. The catalyst is also stable and has good resistance to water during the reaction.  相似文献   

15.
Y. Hu  S. Naito  N. Kobayashi  M. Hasatani 《Fuel》2000,79(15):1925-1932
The emissions of CO2, NOx and SO2 from the combustion of a high-volatile coal with N2- and CO2-based, high O2 concentration (20, 50, 80, 100%) inlet gases were investigated in an electrically heated up-flow-tube furnace at elevated gas temperatures (1123–1573 K). The fuel equivalence ratio, φ, was varied in the range of 0.4–1.6. Results showed that CO2 concentrations in flue gas were higher than 95% for the processes with O2 and CO2-based inlet gases. NOx emissions increased with φ under fuel-lean conditions, then declined dramatically after φ=0.8, and the peak values increased from about 1000 ppm for the air combustion process and 500 ppm for the O2(20%)+CO2(80%) inlet gas process to about 4500 ppm for the oxygen combustion process. When φ>1.4 the emissions decreased to the same level for different O2 concentration inlet gas processes. On the other hand, NOx emission indexes decreased monotonically with φ under both fuel-lean and fuel-rich combustion. SO2 emissions increased with φ under fuel-lean conditions, then declined slightly after φ>1.2. Temperature has a large effect on the NOx emission. Peak values of the NOx emission increased by 50–70% for the N2-based inlet gas processes and by 30–50% for the CO2-based inlet gas process from 1123 to 1573 K. However, there was only a small effect of temperature on the SO2 emission.  相似文献   

16.
The perovskite-type oxides La0.8Ce0.2Cu0.4Mn0.6O3 and La0.8Ce0.2Ag0.4Mn0.6O3 prepared by reverse microemulsion and sol–gel methods (denoted as R and S, respectively), have been investigated on their catalytic performance for the (NO + CO) reaction, and characterized by means of temperature-programmed desorption (TPD), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). XRD measurements proved the presence of the perovskite phase with a considerable amount of CeO2 phase and the formation of CeO2 phase was restrained with the reverse microemulsion method. TEM investigations revealed that the La0.8Ce0.2Cu0.4Mn0.6O3-R nanoparticles were uniform spheres in shape with diameters ranging from 40 to 50 nm, whereas an aggregation of particles was found for the La0.8Ce0.2Cu0.4Mn0.6O3-S catalyst. The activity of NO reduction with CO decreased in the order of La0.8Ce0.2Cu0.4Mn0.6O3-R > La0.8Ce0.2Cu0.4Mn0.6O3-S > La0.8Ce0.2Ag0.4Mn0.6O3-R > La0.8Ce0.2Ag0.4Mn0.6O3-S. In NO-TPD experiments, the principal desorbed species detected in the effluent was NO with a trace amount of O2 and N2O, suggesting that the non-dissociated adsorption of NO on the surface of the perovskite-type oxides was dominant. The XPS results revealed that Ce4+ and Cu+ was the predominant oxidation state for Ce and Cu components in La0.8Ce0.2Cu0.4Mn0.6O3 and La0.8Ce0.2Ag0.4Mn0.6O3 catalysts. The existence of Cu+ ions and its redox reaction (Cu+ ↔ Cu2+) would benefit the NO adsorption and reduction by CO.  相似文献   

17.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

18.
Surface-phase ZrO2 on SiO2 (SZrOs) and surface-phase La2O3 on Al2O3 (SLaOs) were prepared with various loadings of ZrO2 and La2O3, characterized and used as supports for preparing Pt/SZrOs and Pt/SLaOs catalysts. CH4/CO2 reforming over the Pt/SZrOs and Pt/SLaOs catalysts was examined and compared with Pt/Al2O3 and Pt/SiO2 catalysts. CO2 or CH4 pulse reaction/adsorption analysis was employed to elucidate the effects of these surface-phase oxides.

The zirconia can be homogeneously dispersed on SiO2 to form a stable surface-phase oxide. The lanthana cannot be spread well on Al2O3, but it forms a stable amorphous oxide with Al2O3. The Pt/SZrOs and Pt/SLaOs catalysts showed higher steady activity than did Pt/SiO2 and Pt/Al2O3 by a factor of three to four. The Pt/SZrOs and Pt/SLaOs catalysts were also much more stable than the Pt/SiO2 and Pt/Al2O3 catalysts for long stream time and for reforming temperatures above 700 °C. These findings were attributed to the activation of CO2 adsorbed on the basic sites of SZrOs and SLaOs.  相似文献   


19.
Activity for hydrolysis of CCl2F2 (CFC12) on various metal sulfate was investigated. Zr(SO4)2 was found to be the most active while FeSO4, Cr2(SO4)3, Al2(SO4)3, La2(SO4)3 and Ce2(SO4)3 had intermediate activity. MnSO4, CoSO4, and MgSO4 showed low activity and SrSO4, CaSO4, and BaSO4 had even less activity. The major carbon containing product was CO2 and small amount of CClF3 and CO were formed over several sulfates. The crystal structure of the sulfates was stable during decomposition of CCl2F2, and the conversion reached a steady state after initial decrease at 275 °C over Zr(SO4)2 catalyst. The concentration of surface hydroxyl was larger than that over AlPO4-based catalysts and a reaction mechanism similar to that over AlPO4-based catalysts was proposed.  相似文献   

20.
LaxSr2−xMnO4 (0 ≤ x ≤ 0.8) oxides were synthesized and single-phase K2NiF4-type oxides were obtained in the range of 0.1 ≤ x < 0.5. The catalytic activity of LaxSr2−xMnO4 for NO–CO reaction increased with increasing x in the range of solubility limit of La. La0.5Sr1.5MnO4 showed the highest activity among LaxSr2−xMnO4 prepared in this study, but its activity was inferior to perovskite-type La0.5Sr0.5MnO3. Among the Pd-loaded catalysts, however, Pd/La0.8Sr1.2MnO4 showed the higher activity and the selectivity to N2 than Pd/La0.5Sr0.5MnO3 and Pd/γ-Al2O3. The excellent catalytic performance of Pd/La0.2Sr1.2MnO4 could be ascribable to the formation of SrPd3O4 which was detected by XRD in the catalyst but not in the other two catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号