首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
合成了苯乙炔全封端含硅芳炔树脂(FEC-PSA)和含炔丙氧基苯并口恶嗪(P-appe),通过与含硅芳炔树脂(PSA)混合得到了4种不同共混质量比的改性含硅芳炔树脂,用模压成型制备了单向T800碳纤维增强改性含硅芳炔树脂复合材料。利用红外光谱、核磁共振氢谱、差示扫描量热分析和热重分析等方法对改性含硅芳炔树脂及其复合材料的结构和性能进行了研究。结果表明,共混树脂的黏度随温度的升高和加入P-appe质量分数增加而明显下降。当P-appe质量分数为30%时,共混树脂固化物5%热失重温度(T_(d5))为531℃,800℃残留率为85%;共混树脂浇铸体的弯曲强度为41.5 MPa,冲击强度达5.5 kJ/m~2;改性PSA树脂经T800碳纤维增强,其复合材料的弯曲强度和弯曲模量在常温下为1557 MPa和153 GPa,层间剪切强度为66 MPa。  相似文献   

2.
在含硅芳炔中添加乙酰丙酮镍二水合物(Ni(acac)_2·2H_2O)和炔基化合物N,N,N’,N’-四炔丙基-4,4’-二氨基-二苯甲烷(B4)制备了两种高热稳定性PSA树脂体系,考察添加物用量对体系凝胶时间、固化温度和热稳定性的影响。结果显示:当添加0.2wt%的Ni(acac)_2·2H_2O时,凝胶时间21.2min;峰值固化温度214℃;质量损失5%的热分解温度(T_(d5))为651.1℃;再向其中添加3wt%B4后,凝胶时间缩短到8.5min;峰值固化温度提高到221℃;树脂固化物的热稳定性显著提高。  相似文献   

3.
新型含硅芳炔树脂及其复合材料的性能   总被引:1,自引:1,他引:0  
报道了含硅芳炔树脂(PSA-V4)流变性能、固化性能以及浇注体和复合材料性能。结果显示PSA-V4树脂溶于大多数有机溶剂,具有良好的加工性能;分析表明PSA-V4浇注体具有优良的耐热性能、介电性能,其复合材料也具有好的机械性能。  相似文献   

4.
聚硅烷改性含硅芳炔树脂的耐热性能研究   总被引:3,自引:0,他引:3  
含硅芳炔树脂具有优异的耐高温性能,在高温下可形成C/SiC有机无机杂化材料,用聚硅烷对含硅芳炔树脂进行改性以提高其含硅量。采用示差扫描量热(DSC)、红外光谱(FT-IR)分析了改性含硅芳炔树脂的固化行为,采用TGA考察了改性含硅芳炔树脂固化产物及其烧结物的热稳定性能,并用XRD对烧结物进行了分析。研究表明,改性后的含硅芳炔树脂黏度降低、硅含量提高;固化物和烧结物在1200℃下空气中的残留率均提高了40%以上;固化物经1450℃烧结后形成了β-SiC,含聚硅烷30%的改性树脂烧结物中SiC含量达到41%。  相似文献   

5.
采用双叔丁基过氧化二异丙基苯(BIBP)作为促进剂,以丁苯树脂(SBR)增韧改性含硅芳炔树脂(PSA),研究了SBR增韧改性PSA的性能。结果表明:SBR/PSA共混体系无促进剂加入时,因两者反应活性相差较大,容易发生相分离,而BIBP的加入可以使其形成均相体系。随着SBR含量的增加,改性后的PSA弯曲强度和弯曲模量先增加后减小,当SBR含量增加到40%(质量分数)时,改性后的PSA弯曲强度和模量达到最大值。改性前PSA断面光滑,表现为脆性断裂,改性后的PSA断面纹路明显加深并增多,说明SBR有效改善了PSA的韧性。同时,随着SBR含量的增加,改性后PSA的高频介电性能不断提高。  相似文献   

6.
为满足工程领域对耐高温树脂基透波复合材料的需求,研究石英纤维(QF)增强新型含硅改性聚芳炔(PSA)树脂基复合材料(QF/PSA)的制备方法及其性能。首先对树脂的黏度进行分析,确定了树脂在不同温度和时间下的黏度变化预测模型,适宜的树脂传递模塑工艺(Resin Transfer Molding, RTM)注胶温度在70~100℃范围;对树脂固化过程中的放热量、红外光谱和流变特性进行分析,确定了树脂的固化温度和固化过程,在250℃可以实现树脂的固化。基于上述分析进行了复合材料的高质量制备,并进一步对复合材料的微观形貌、力学性能、热膨胀性能、介电性能和耐高温性能进行分析和试验验证。材料的玻璃化转变温度(Tg)大于500℃,5%热失重温度(T5%)高达625℃,石英灯试验表明耐高温能力可达520℃/1000 s;介电常数稳定在3.1~3.2,介电损耗稳定在0.003以下;力学性能满足功能材料的使用要求。上述研究表明,该新型含硅聚芳炔树脂基透波复合材料在航空航天领域具有重要的应用价值。   相似文献   

7.
制备苯乙炔全封端的含硅芳炔树脂,与含硅芳炔树脂(PSA)共混,得到满足RTM成型工艺要求的低黏度含硅芳炔树脂,合成三乙氧基乙炔基硅烷(TEOAS)并应用于改性石英纤维(QF)布,采用RTM工艺制备石英纤维增强的PSA树脂复合材料。对共混树脂的加工工艺性、耐热性能、石英纤维的表面和复合材料的性能进行研究。结果表明:共混PSA树脂不但具备较高的耐热性,而且有良好的加工工艺性能;X射线光电子能谱(XPS)分析表明QF表面接枝上乙炔基,TEOAS处理后QF与共混PSA树脂的界面黏结强度增强,复合材料的弯曲强度和层间剪切强度(ILSS)分别较未处理时提高了28.8%和25.4%。  相似文献   

8.
以芳香基双炔和1,4-二(二甲基硅烷基)苯为原料,乙二醇二甲醚(DME)为溶剂,NaO H为催化剂,空气氛围下,一步反应制备得到含硅芳炔树脂(SPAR).并进一步探讨了催化剂、反应溶剂、温度、时间对聚合反应的影响.通过凝胶渗透色谱(GPC)、红外光谱、核磁分析确定产物的分子量和化学结构.实验结果表明:使用20 mol%...  相似文献   

9.
通过水解缩聚、巯烯加成及酯化反应合成了八(十一烷酸丁炔醇酯基硫醚丙基)笼型倍半硅氧烷(POSS-LA),并通过红外光谱、核磁共振谱、差示扫描量热法等对POSS-LA的结构及性能进行了表征。用POSS-LA与含硅芳炔树脂(PSA)共混制得改性树脂LP-PSA,并对改性LP-PSA树脂进行了表征。研究表明,改性LP-PSA固化物的强度及韧性随POSS-LA的加入而提高。当POSS-LA的质量分数为15%时,弯曲强度可提升86%,冲击断裂能可提升91%。此外,LP-PSA固化物还显示了良好的热稳定性(热分解温度T_(d5)436℃)。  相似文献   

10.
含硅芳炔树脂(PSAs)因其突出的耐热性能,在诸多领域具有应用价值.为满足高速发展的航空航天、电子信息技术的应用需求,耐高温树脂材料性能亟待提升.本研究以1,3-二乙炔基苯和苯基二氯硅烷为原料,通过格氏试剂法合成线型聚(苯基硅烷-芳炔)树脂(PPSA),对其交联固化形成耐高温结构的机理进行研究.采用差示扫描量热仪(DS...  相似文献   

11.
以1,2-二氯乙烷(DEC)为溶剂,将自制的新型含氰基芳二酰氯2,6-二(3-氯甲酰苯氧基)苯甲腈(BM-ClPOBN)与各种芳香二酚进行缩聚反应,获得一系列新型含氰侧基聚芳酯.用红外(FT-IR)、元素分析及热失重分析(TGA)等方式对新型聚芳酯的结构与性能进行表征.结果表明,聚合物具有预期结构且热失重分解温度(5%)为385398℃,具有良好的热稳定性.溶解实验表明,聚合物除了可溶解于N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAC)及N,N-二甲基甲酰胺(DMF)等强极性溶剂外,也能在一些普通溶剂如三氯甲烷(CHCl3)、四氢呋喃(THF)及1,2-二氯乙烷(DEC)中,表现出良好的溶解性.  相似文献   

12.
新型含氰侧基氯取代可溶性聚芳酰胺的合成及表征   总被引:1,自引:0,他引:1  
在DMAC为溶剂,叔胺为HCl吸收剂的条件下,将4,4'-二氨基二苯砜(DAPS)与自制的2,6-二(4-氯甲酰苯氧基)苯甲腈(BCIPOBN)及2,5-二氯对苯二甲酰氯(DCC)进行三元低温共缩聚反应,合成一系列新型含氰侧基氯取代可溶性的聚芳酰胺.用IR、TG等方法对其结构和性能进行了表征.  相似文献   

13.
运用自主设计合成的含有端炔和芳酰胺酸结构的硅烷偶联剂(CA-K)改善石英纤维(QF)/含硅芳炔(PSA)复合材料的高温界面黏结性能。FTIR、DSC以及TGA跟踪分析表明:CA-K在PSA固化时同步发生热闭环, 形成耐热的酰亚胺环结构, CA-K同时参与PSA的固化;XPS分析推断出CA-K与纤维发生化学键合;CA-K处理后QF/PSA复合材料的界面黏结强度增加, 常温下层间剪切强度(ILSS)和弯曲强度分别较未处理时提高了34.7%和40.4%, 在250 ℃时ILSS和弯曲强度的保留率分别达到82.5%和54.9%, 而500 ℃时ILSS和弯曲强度保留率为85.1%和64.2%。   相似文献   

14.
聚丙烯酸酯胶粘剂的合成与表征   总被引:1,自引:0,他引:1  
本文研究了丙烯酸酯类胶粘剂 .通过采用不同单体、引发剂及引发剂的用量 ,合成一系列丙烯酸酯系胶粘剂 .并对其粘度、粘接强度 ,含固量和固化时间的检测找出最佳条件 ,测得了一系列性能参数显示较好的综合性能 .  相似文献   

15.
设计并合成了一种含有二腈基的硅烷偶联剂DCA(Dicyanide-containing Silane Coupling Agent),采用FTIR、1H-NMR、13C-NMR表征了其化学结构。将DCA添加到石英纤维/含硅芳炔(QF/PSA)复合材料体系中,DCA含量为QF的2.0wt%时,常温条件下改性后的QF/PSA复合材料层间剪切强度(ILSS)和弯曲强度分别提升了63.3%和28.1%;250℃时ILSS和弯曲强度的保留率分别为83.0%和81.9%;500℃时ILSS和弯曲强度的保留率分别为54.7%和60.0%。偶联剂DCA固化后的热失重5%的温度(Td5)为357.8℃,900℃时残炭率为55.7%。XPS和DSC数据表明,偶联剂DCA在QF/PSA复合材料界面形成化学桥接,其中腈基在229℃固化,炔基在245℃参与PSA的固化,在PSA与QF间形成强界面层。SEM观察表明,经偶联剂DCA改性后QF/PSA复合材料的破坏属于韧性断裂。新型偶联剂DCA可显著改善QF/PSA复合材料界面,提高其高温力学性能。   相似文献   

16.
马文石  张冬桥  段宇  万兆荣  王洪  徐迎宾 《功能材料》2012,43(18):2568-2572
以乳液聚合法制备粒径分布均匀、球形度良好的聚甲基硅氧烷微球(MPSQ)、聚乙烯基硅氧烷微球(VPSQ)、聚巯丙基硅氧烷微球(MPPSQ),采用SEM、DLS、FT-IR、XRD、TGA、接触角等测试技术对微球的微观形貌、粒径大小及分布、聚集态结构、耐热性、疏水性等进行了表征。研究结果表明,有机基团对微球的耐热性与疏水性有重要影响,MPSQ和VPSQ的耐热性优于MPPSQ,疏水性从高到低依次为:MPSQ>VPSQ>MPPSQ。聚硅氧烷微球的形成过程可能是单体首先在催化剂的作用下,水解生成硅醇,硅醇开始缩聚形成核,之后通过吸取溶液的硅醇,不断成长,最终形成微球,其中同时存在核生成和核生长,两过程相互竞争,哪个过程占优势取决于反应条件。提高反应温度,使得核生成占优势,最终生成的微球粒径变小,单分散性变差。  相似文献   

17.
水性环氧丙烯酸酯的制备与表征   总被引:3,自引:0,他引:3  
通过双羟基化合物中的羟基与环氧树脂反应 ,获得具有亲水链段两端为环氧基的改性环氧树脂 ,然后和丙烯酸羧基发生酯化反应 ,制得水性环氧丙烯酸酯。研究了催化剂种类、催化剂用量和反应温度对转化率的影响 ,结果表明选用KOH作催化剂 ,用量为 0 7% ,反应温度为 90℃时所得产物外观和水溶性都很好。采用FT IR红外光谱对所合成的树脂的结构进行了表征 ,表明获得了目的结构的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号