首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There is a complex heat and mass transfer phenomenon in the solar stills. It is desired to examine the ways of maximizing the efficiency with the help of an effective thermodynamic tool, i.e., energy and exergy analysis. In this paper, a thermodynamic model has been developed to estimate the overall instantaneous exergy efficiency of the single-effect horizontal basin-type ideal passive solar stills. Theoretical overall instantaneous exergy efficiency of a passive solar still having 30° tilt angle of glass cover and water depth of 0.04 m on a typical day in June is evaluated and found in the range 0.06 to 5.9 % for the variation of experimental results of energy efficiency from 8 to 87.2 %. The daily energy and exergy efficiency of the solar still is 20.7 and 1.31 %, respectively. An optimum exergy efficiency of the ideal solar still is found to be 21.11 % corresponding to 80 % ultimate energy efficiency and at a typical operating condition. A feasible target of optimum exergy efficiency has been set under assumed ideal conditions to achieve in the future for the real working passive solar stills. It is also confirmed that the overall exergy efficiency increases with the increase of water temperature and decreases with the increase of ambient temperature.  相似文献   

2.
This paper presents the thermal analysis of the process of heat extraction by circulating water layer through the convective zone of a partitioned solar pond. The observed variation of atmospheric air temperature and solar intensity is assumed periodic. Explicit expressions for the transient rate and temperature at which heat can be extracted by circulation of water at constant flow rate, are derived. Numerical computations corresponding to solar heat flux and atmospheric air temperature measurement at New Delhi during the year 1974 have been made, and the optimization of the flow rate as well as the depth of the convective-non-convective zones in the pond have been investigated. The optimum heat retrieval efficiency of 27.5%, 34% and 40% corresponding to heat retrieval temperatures of 97°C, 60.5°C and 45.5°C, respectively, are predicted for water flow rates of 2 × 10?4, 5 × 10?4 and 10?3 kg/s.m2, respectively. The load levelling in retrieved heat flux improves as flow rates are lowered, and the non-convective zone is oversized. With the non-convective zone depth near optimum, an increase in the depth of the heat extraction zone considerably influences the retrieved heat flux; it shifts its maximum to winter months and deteriorates the load levelling. The variability in flow rate required for the maintenance of constant temperature of the heat extraction zone is also investigated. It is found that the required variability is less for higher temperatures of the extraction zone and larger depths of non-convective zone.  相似文献   

3.
In this paper, thermal models of all types of solar collector‐integrated active solar stills are developed based on basic energy balance equations in terms of inner and outer glass temperatures. In this paper, hourly yield, hourly exergy efficiency, and hourly overall thermal efficiency of active solar stills are evaluated for 0.05 m water depth. All numerical computations had been performed for a typical day in the month of 07 December 2005 for the climatic conditions of New Delhi (28°35′N, 77°12′E, 216 m above MSL). The thermal model of flat‐plate collector integrated with active solar still was validated using the experimental test set‐up results. Total daily yield from active solar still integrated with evacuated tube collector with heat pipe is 4.24 kg m?2 day?1, maximum among all other types of active solar stills. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This study primarily focuses on comparative experimental analysis on standalone conventional solar still (CSS), inclined solar still (ISS), and integrated conventional and inclined solar still (CSS‐ISS) for different parameters that affect the freshwater yield. For enhancing the freshwater yield only a few studies are available on still‐still integration. The present novel study provides a greater improvement in improving the freshwater yield by integrating ISS with CSS. This experimental work mainly concentrates on the importance of water depth (d w) and mass flow rate of water ( m w) in the solar still. Water depth inside the conventional still varied from 0.02 to 0.06 m whereas, water is constantly flown with a mass flow rate of 8.33 kg/hour in an ISS with baffles. The experimental result shows that the accumulated freshwater yield from CSS‐ISS, ISS, and CSS were 6.2, 5.04, and 4.24 kg, respectively. CSS‐ISS and ISS produced 46.23% and 18.87% higher productivity than the CSS. From the experimental investigation, it is also identified that the water temperature is significantly improved by 20% using integration as compared with CSS without integration under the same water depth of d w = 0.02 m. The overall improvement in yield was higher in the case of CSS‐ISS. The deviations between experimental and theoretical values of yield from the conventional and modified solar still were in the range of ±7%.  相似文献   

5.
This paper presents a periodic analysis of the process of heat extraction by the brine layer circulating at constant flow rate through the bottom convective zone of a solar pond. Explicit expressions for the transient rate of heat extraction and the temperature at which heat can be extracted, as a function of time, depths of convective as well as non-convective zones and the flow rate, are derived. Extensive analytical results for the optimum performance of a pond during its year round operation are presented. In a pond with an upper convective zone depth of 0.2 m optimum heat extraction efficiencies of 24 per cent, 29 per cent and 32 per cent corresponding to heat extraction temperatures of 89, 55 and 42°C are predicted for water flow rates of 2 × 10?4, 5 × 10?4 and 10?3 kg/s m2, respectively. The load levelling in the extracted heat flux as well as in its temperature improves as the flow rate is lowered and the non-convective zone is over sized. An increase in the total depth of the solar pond improves the load levelling in extraction temperature, but influences the extracted heat flux differently; shifts its maximum to winter months and deteriorates the load levelling. The variability in flow rate required for the maintenance of constant temperature of the heat extraction zone is also investigated. It is found that the required variability is less for higher temperatures of the heat extraction zone and larger depths of the non-convective zone.  相似文献   

6.
A transient analysis of a double basin solar still has been presented in this paper, incorporating the effect of intermittent flow of waste hot water into the lower basin at a constant rate during off sunshine hours. The waste hot water can be obtained either from a thermal power plant or any other industry. The effect of various parameters, e.g. inlet temperature, flow rate, water mass, etc., on the distillate output of the still has been investigated in detail. It has been found that the yield increases with flow rate if the inlet waste hot water temperature is above its optimum value. If the inlet temperature is below its optimum value, the yield decreases as the flow rate increases. The yield also decreases with an increase of water mass in the lower basin.  相似文献   

7.
In this paper a new self-sustainable hybrid photovoltaic thermal (PV/T)-integrated-active solar still has been designed and tested for composite climate at I.I.T. New Delhi (28°32′N, 77°12′E). The PV system is used to generate electricity to run the pump (60 W and 18 V) as well as thermal energy to heat the water in the collector. The proposed design of hybrid-active solar still can be used at any remote location because of its self-sustainability. The experiments were performed on the set-up for different water depths and for different running duration of the pump. It has been observed that the hybrid-active solar still gives a higher yield (more than 3.5 times) than the passive solar still. It has also been observed that the daily distillate yield and thermal efficiency of the hybrid-active solar still remain almost the same for all water depths in the basin by reducing the daily running period of the pump from 9 to 5 h. This running period of the pump reduced saves 43% of the power used to run the pump with 9 h running, without affecting the performance of the solar still. This work also deals with exergy analysis of the system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This study presents the experimental analysis of spiral flow flat plate collector passive solar water heater. A solar water heater was fabricated with spiral shaped copper water tube fixed on the flat plate aluminium absorber plate. The experiments were conducted at Kovilpatti (9°10′ N, 77°52′ E), India, during summer. Variations in exit water temperature and efficiency of the system were studied for different mass flow rates. Around 2 pm, the system reached the maximum efficiency point. The maximum efficiency of the system was 65.98% at 0.015 kg/s mass flow with exit water temperature of 95°C when the ambient temperature was 36°C.  相似文献   

9.
This paper presents the thermal performance of a roof as a solar collector/storage system which is important for the thermal design of buildings. The system consists of a mass of concrete or concrete insulation, one face of which is blackened/glazed and exposed to solar radiation and ambient air, while the other is in contact with room air at constant temperature. The heat can be extracted by the passage of water through the network of tubes in this block. It is seen that, by increasing the depth of the tubes, the rise in water temperature decreases but the time difference between the maxima of the solair temperature and that of the outlet water temperature increases. At a tube depth of 0·10 m, the maximum temperature rise of the water is 33·5°C. The corresponding efficiency of the system is 28·0% while the flow rate of water is 5·0 litre/h m2; the heat flux entering the room is also reduced considerably.  相似文献   

10.
The aim of this paper is to optimize the number of collectors for PV/T hybrid active solar still. The number of PV/T collectors connected in series has been integrated with the basin of solar still. The optimization of number of collectors for different heat capacity of water has been carried out on the basis of energy and exergy. Expressions of inner glass, outer glass and water temperature have been derived for the hybrid active solar system. For the numerical computations data of a summer day (May 22, 2008) for Delhi climatic condition have been used. It has been observed that with increase of the mass of water in the basin increases the optimum number of collector. However the daily and exergy efficiency decreases linearly and nonlinearly with increase of water mass. It has been observed that the maximum yield occurs at N = 4 for 50 kg of water mass on the basis of exergy efficiency. The thermal model has also been experimentally validated.  相似文献   

11.
Shiv Kumar  G.N. Tiwari 《Solar Energy》2009,83(9):1656-110
In this paper, an attempt is made to estimate the internal heat transfer coefficients of a deep basin hybrid (PV/T) active solar still. The estimation is based on outdoor experimental observation of hybrid (PV/T) solar still for composite climate of New Delhi (latitude 28°35′N and longitude 77°12′E). The internal heat transfer coefficients are evaluated by using thermal models proposed by various researchers. The comparison of hourly yield predicted using various thermal models to the experimental has also been carried out by evaluating the correlation coefficient and percentage deviation. It is observed that, Kumar and Tiwari model (KTM) better validate the results than the others model. The average annual values of convective heat transfer coefficient for the passive and hybrid (PV/T) active solar still are observed as 0.78 and 2.41 W m−2 K−1, respectively at 0.05 m water depth.  相似文献   

12.
The aim of this work is to explore the thermal performance of a tracked tubular solar still (TSS) with a parabolic trough concentrator in Baghdad (33.27° N, 44.37° E) in September 2022. The present tubular still is distinguished by its hexagonal glass cover. The effect of integrating the TSS with a heat pipe, the still tilt angle (10°, 15°), and the depth of saline water inside the still partitions on the productivity of freshwater are investigated. The results showed that using heat pipe enhances the freshwater productivity by 25%–40% and the efficiency by 25%. For the still integrated with heat pipe, as the water depth is increased from 5.5 to 6.5 cm the productivity of freshwater is increased by 16% and 20% for tilt angles 10° and 15°, respectively.  相似文献   

13.
In high concentrating photovoltaic systems, thermal regulation is of great importance to the conversion efficiency and the safety of solar cells. Direct‐contact liquid film cooling technique is an effective way of thermal regulation with low initial investment. Tilt of solar cells is common in concentrating solar systems. An evaluation of direct‐contact liquid film cooling technique behind tilted high concentration photovoltaics was performed using both experimental and computational approaches. In the experiment, deionized water was used as the coolant at the back of simulated solar cells. Solar cell inclination of 0° to 75° with inlet water flow rate of 100–300 L/hour and inlet temperature of 30°C to 75°C were experimentally investigated. A two‐dimensional model was developed using computational fluid dynamics technique and validated by experimental results. The effects of inclination on average temperature, temperature uniformity, and heat transfer coefficient were discovered in this paper. The results indicated that 20° is the optimum angle for liquid film cooling. In addition, optimum inlet width, temperature, and velocity for inclination over 30° are 0.75 mm, 75°C, and 0.855 m/s, respectively.  相似文献   

14.
为了研究太阳能谷电蓄能供热采暖系统运行特性,采用TRNSYS软件建立系统各部件模型,分析了太阳能辐照强度、集热面积和空气流量对系统太阳能保证率的影响,对系统进行优化研究。结果表明:太阳能辐射强度对系统太阳能保证率的影响较大,拉萨全年太阳能保证率波动比上海和北京小;太阳能保证率与集热面积呈正相关;空气流量对太阳能保证率影响较小,当空气流量为40 m3/(h∙m2) 时太阳能保证率最大,相比36 m3/(h∙m2)工况提高了0.26%;选择集热面积为650 m2、最佳空气流量为40 m3/(h∙m2) 的优化系统,相比集热面积为716 m2、空气流量为36 m3/(h∙m2) 工况下的年均太阳能保证率降低了1.22%。本研究可为太阳能谷电蓄能系统的后续研究提供参考。  相似文献   

15.
This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1–6.2 years and 3.3–23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively.  相似文献   

16.
An experimental investigation of the volumetric heat transfer coefficient in a three-phase direct contact condenser was carried out. A 75-cm-long cylindrical Perspex column with a 4 cm diameter was used. Only 48 cm of the column was utilised as the active direct contact condensation height. Pentane vapor at three different initial temperatures (40°C, 43.5°C, and 47.5°C), with differing mass flow rates, and tap water at a constant initial temperature (19°C) with five different mass flow rates were employed as the dispersed phase and the continuous phases, respectively. The results showed that the volumetric heat transfer coefficient increased with increasing mass flow rate ratio (variable dispersed phase mass flow rate per constant continuous phase mass flow rate), the continuous phase mass flow rate and holdup ratio. An optimal value of the continuous phase mass flow rate is shown for an individual dispersed phase mass flow rates. This value increases with increasing vapor (dispersed) phase mass flow rate. Furthermore, it was observed that the initial driving temperature difference had no effect on the volumetric heat transfer coefficient. While, the temperature gained by the continuous phase has a considerable effect.  相似文献   

17.
A theoretical and experimental study was carried out to investigate the effect of adding a passive condenser on the performance of the single slope, basin type solar still. A theoretical model based on Dunkle [1] mass transfer (evaporation) rate was developed. The model assumes that the transfer of water vapour from the still to the condenser is due to one or more of the following mass transfer modes; (i) diffusion, (ii) purging and (iii) natural circulation. The theoretical results indicate that diffusion contribution is relatively small. The contribution through purging represents the fraction [V(cond)/(V(cond) + V(s))] of the still yield, while it represents 75% of the still yield through natural circulation. An experimental study that simulates the purging mass transfer mode was investigated. The experimental results show good agreement with the theoretical predictions and an increase of 45% in solar still efficiency was obtained.  相似文献   

18.
This paper illustrates an analysis of the performance of a solar wall as a collector storage system. the south facing wall consists of a mass of concrete/brick whose one surface is blackened and glazed, and a network of pipes (metallic or plastic) is laid in a plane from which heat can be extracted by flow of fluid in such a manner that the temperature of the plane of heat retrieval keeps constant. the collection efficiency of the system is found to be 80·0 and 60·7 per cent for collection temperatures 20 and 25°C respectively on the surface; the maxima/minima of the rate of heat retrieval (Q(t)) occurs about 12 h after the maxima/minima of solar temperature at a depth of the plane of heat retrieval = π/α1, with a maximum efficiency of 21·47.  相似文献   

19.
The solar gel pond is an innovative concept which overcomes many of the shortcomings of the conventional salt-gradient solar pond. In this paper, the design, construction and start-up details of a commercial scale pond (400 m2), built for a publishing company in Albuquerque, New Mexico will be presented. A pond with trapezoidal cross section was designed so that shadowing could be minimized and also the ratio of surface area to the volume of the storage zone could be maximized. The publishing company required a minimum of 1 GJ/day (1MBTU/day). Generally it has been noted that in ponds with large volume a lesser percentage of retained energy is lost as edge losses. Based on the above consideration a pond size of 400 m2 and 5 m deep with a gel thickness of 60 cm and a mass flow rate (for the heat extraction loop) of 1 × 10−4 to 1 × 10−3 kg/m2·sec was determined to be the optimum size for the publishing company's needs. Two to seven percent salt water was used mainly to keep the gel bags floating on the surface. Tedlar bags were used to contain the gel. During the first year of operation, while the pond was still heating up, the pond obtained a temperature of 60°C and the gel showed no signs of degradation.  相似文献   

20.
In the present work an attempt is made to enhance the of double slope solar stillproductivity by an immersion type water heaterusing. The effect of using an external fan to cool the glass surface is also examined. Experiments were carried out for winter season in Saudi Arabian climatic conditions at latitude 26° N. A solar still with 35° glass slope angle is chosen in our study. Since the yield of a solar still is more for low water depths, the water level in the base tank was maintained at 1 cm. The experimental results showed that the productivity increased by a significant 370% when two water heaters each having 500 W capacities was used. When external cooling fan was used the productivity was found to decrease by 4 and 8% for wind speeds of 7 and 9 m/s respectively. Thermal modeling was also doneby the heat and mass transfer relationsusing, and then numerical simulations were carried out to validate with the experimental results. A good agreement between experimental and numerical results was found. The present study is partial implementation of two patents submitted in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号