首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在锂离子电池众多负极材料中,硅具有超高的理论比容量(4 200 mA·h/g)和较低的嵌锂电位(约为0.4 V vs Li/Li+),是制备高能量、高功率锂离子电池理想的负极材料。然而,在嵌/脱锂过程中,硅负极巨大的体积变化造成电极材料严重的结构破坏和快速的容量衰减。梳理了硅作为锂离子电池负极材料的储锂机制、结构演变、界面反应和动力学行为等方面的研究,总结了表面和界面改性在锂离子电池硅基负极材料中应用的最新进展,阐述内容主要包括硅电极的表面修饰、电解液的优化和黏结剂的开发等,并对硅负极材料表面和界面改性进行了展望。  相似文献   

2.
通过静电纺丝技术结合碳化工艺制备一种SiC增强碳纳米纤维(SiC@CNFs)复合结构.TGA、XRD、XPS及SEM的样品测试结果显示,SiC颗粒含量(质量分数,全文同)为62%,且均匀分布于CNFs的表面.该结构制备的锂离子电池负极材料既保留了CNFs的高导电性,又获得了SiC增强的结构韧性.电化学性能测试结果表明,将其作为锂离子电池负极材料,循环500次后,容量保留率高达134.01%,远高于CNFs.同时,该结构的电化学阻抗值变化较小,导电性能保持较好.通过静电纺丝技术制备的SiC@CNFs结构作为锂离子电池负极材料,制作成本低,结构可控且性能稳定,是目前对电池负极材料的有益补充.  相似文献   

3.
近年来, 随着便携式电子电气设备的发展, 人们对锂离子电池负极的储锂性能和循环稳定性等有了更高的 要求。石墨作为目前商业化程度最高的锂离子电池负极材料, 有着成本低、性能稳定、环境友好等优点, 但同时也存 在比容量低、石墨片层剥落削减使用寿命等缺点, 不足以满足新一代高能量新能源设备的要求。为解决这一问题, 研究学者们在对以石墨为主导的负极进行改性的同时, 也探索着硅基、锡基、过渡态金属化合物等大容量、高性能 材料在锂离子电池负极的应用。在高能球磨法的基础上, 综述其在锂离子电池负极储锂材料改性中的应用研究进 展, 提出高能球磨法在改性锂离子电池负极储锂材料领域的应用建议, 并对锂离子电池负极改性技术的发展趋势进 行展望。  相似文献   

4.
采用两步高能球磨法制备了一种新的锂离子电池硅基复合负极材料Si1.81Co0.6Cr0.6Zn0.2/MGS.用X射线衍射(XRD)和扫描电镜(SEM)表征了材料的组成和形貌结构.电化学测试表明,Si1.81Co0.6Cr0.6Zn0.2/MGS作锂离子电池负极材料有较好的电化学性能:首次可逆容量为561 mAh.g-1,50个循环后,可逆容量的保持率为91%.Si1.81Co0.6Cr0.6Zn0.2/MGS循环性能的改善归因于电极结构在循环过程中的稳定性.  相似文献   

5.
为了进一步增大锂离子电池的能量密度与功率密度,Si基负极材料已经得到了广泛而深入地研究。Si材料具有很高的比容量,低的电压平台,环境友好且储量丰富。然而,Si材料在充放电过程中会发生巨大的体积变化和形成不稳定的SEI膜,限制了Si基负极材料在锂离子电池中的实际应用。最近,针对Si材料作为锂电池负极材料上的缺陷而进行了大量的研究且取得了比较好的研究结果。  相似文献   

6.
硅基负极材料因具有高电化学容量是一种极具发展前景的锂离子电池负极材料.评述单质硅、硅-金属合金、硅-碳复合材料以及其他硅基复合材料作为锂离子二次电池负极材料的最新研究成果,分析锂离子电池硅负极材料存在问题,探讨硅基负极材料的合成、制备工艺以及未来硅基材料的研究方向和应用前景.分析结果表明,通过硅的纳米化、无定形化、合金化及复合化等技术手段,实现硅基负极材料同时兼备高容量、长寿命、高库伦效率和倍率性能,是未来的主要发展方向.  相似文献   

7.
硅基负极材料由于具有比容量高、安全及商业发展前景好等优点而受到业界广泛关注,但锂离子电池硅基负极存在循环寿命短和首次库仑效率低等问题,采用硅基负极预锂化技术可有效改善这类问题。综述硅基负极材料预锂化技术的最新研究进展,着重阐述稳定的金属锂粉末、电化学预锂化、添加剂预锂化及机械预锂化等技术,并展望未来硅基负极预锂化的研究方向。  相似文献   

8.
通过共沉淀法制备了前驱体Ni1/3Co1/3-xMn1/3(OH)2,然后与LiOH·H2O、不同金属氧化物(MgO、ZrO2)分别混合制备锂离子电池正极材料LiNi1/3Co1/3-xMn1/3MxO2(M=Mg,Zr).通过X射线衍射(XRD)、扫描电镜(SEM)、高精度电池测试系统、交流阻抗对材料结构和电化学性能进行了表征。实验结果表明,包覆MgO后,材料的结构发生变化,而包覆ZrO2没有改变正极材料的结构。与无包覆的正极材料相比较,包覆ZrO2材料的首次放电量为119.07 mAhg-1,20次循环后容量保持率为92.64%,放电量仍达到110.31 mAhg-1。  相似文献   

9.
新型锂储藏合金负极材料研究进展   总被引:1,自引:0,他引:1  
合金型锂离子电池负极材料由于容量高、安全性好而受到了极大的关注,最有希望取代碳材料在下一代高性能锂离子电池中得到应用.笔者着重介绍了以锡合金为代表的锂储藏合金的研究进展,以及最新的纳米技术和薄膜技术在研究过程中的应用.由于新技术的应用,解决了合金材料在充放电过程中由于体积膨胀而粉化的缺点,锂储藏合金材料的研究取得了突破性的进展,循环寿命已经达到了300周以上,离实际应用仅一步之遥.锡基合金负极材料是最有竞争力的下一代锂离子电池负极材料之一。  相似文献   

10.
高容量的过渡金属氧化物要想替代目前低容量的商业碳作为锂离子电池负极材料,必须设计解决碎化问题和电导率问题。本文通过热解和水热氧化法合成了N掺杂的碳基Co/Co3O4@C纳米粒子核壳结构复合材料。通过调整水热时间,可以获得结构完整、形态规则、尺寸均匀的产品。其作为锂离子电池电极材料,在0.1A/g恒流循环50次后,放电容量稳定在620 mA·h/g(碳质量分数为56.8%),高于其理论比容量,在2A/g恒流下250次循环后,可逆容量为572 mA·h/g,库仑效率可保持在99.8%左右。这说明具有良好分散性的N掺杂碳基Co/Co3O4@C纳米粒子核壳结构具有优良的结构稳定性和电导率,作为负极材料有希望应用于高容量、大功率的锂离子电池当中。  相似文献   

11.
电动汽车、便携式电子设备和储能设备等行业的快速发展,对高能量密度锂离子电池的需求 日益迫切.硅材料由于具有最高的理论储锂容量,目前成为锂离子电池负极材料的研究热点.通过 温和的溶液刻蚀工艺并结合热解还原法制备了镍、碳修饰的亚微米一维结构硅负极材料,并对其进 行结构分析和电化学研究.结果表明:制备所得的硅亚微米线表面实现了镍纳米粒子的均匀修饰和 碳材料的包覆,在1C的电流密度下表现出900mAh/g的可逆储锂容量.一维结构设计与镍、碳修 饰可以提升硅材料的循环与倍率性能,为高性能锂离子电池负极材料的制备提供可能.  相似文献   

12.
锡、硅负极材料由于具有高的比容量等优点,成为提高锂离子电池能量密度的首选负极材料。首先介绍了目前产业界开发锡、硅负极材料的进展,并从商业化的角度比较了这两类材料在开发工艺及实际使用电性能方面的区别。进一步从基础研发角度重点阐述了不同结构的硅基材料(单质硅、硅氧化物、硅碳复合物及硅合金)的电性能改性研究进展,指出了具有工业化前景的工艺方法。  相似文献   

13.
当前我国大力发展新能源电动汽车,开发高效的锂离子动力电池技术是至关重要的一环。采用简易的方法合成了硼掺杂多孔碳纳米纤维作为锂离子电池的负极材料,表现出优异的电化学性能;该电极材料在100mAg~(-1)条件下首次充电比容量达到1450 m Ahg~(-1)的比容量,且120次循环后仍保持1300 m Ahg~(-1)的比容量,甚至在500 m Ag~(-1)电流密度下,800次循环后仍有390 m Ahg~(-1)的比容量。该结构的硼掺杂多孔碳纳米纤维具有很大潜力,可以作为下一代动力锂离子电池的负极材料,且大规模应用。  相似文献   

14.
在简要介绍锂离子电池的工作原理的基础上,对锂离子电池负极材料的研究现状进行分析,比较各种负极材料的优缺点,并对未来的研究方向进行展望,指出对各类锂离子电池负极材料,应该结合其优缺点,有针对性和侧重点地单独研发,如开发高容量型合金负极、高功率/高安全型钛酸锂负极以及低成本型金属氧化物负极材料。  相似文献   

15.
采用高温固相法合成了掺杂Co、Cr、La元素的尖晶石型锰酸锂Li1.02Co0.02M1xM2yMn1.98-x-yO4电池材料;X射线衍射(XRD)表征所合成的产物呈现出良好的尖晶石型结构材料;扫描电子显微镜(SEM)显示合成材料均具有良好的粒径分布(2~3μm)及外貌.以该活性物质作为锂离子电池正极材料,经充放电测试研究表明:掺杂的尖晶石型锰酸锂正极材料Li1.02Co0.02M1xM2yMn1.98-x-yO4能够更好地抑制尖晶石型锰酸锂材料的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出更好的电化学可逆特性,100次循环后放电容量仍能保持初始容量的95%以上.作为锂离子电池正极材料LiCoO2的替代材料,该研究为锰酸锂尖晶石型正极材料的改性提供了一种新方法.  相似文献   

16.
锂离子电池锑基复合氧化物负极材料的研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了SbFeO3和SbPbO2.5锑基复合氧化物粉末.将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能.这两种锑基复合氧化物都有较高的电化学容量,SbFeO3的可逆容量为550mAh/g,SbPbO2.5的可逆容量为1270mAh/g,这两种锑基复合氧化物的电化学容量远高于碳材料(石墨的理论容量为372mah/g),因此,可以作为锂离子电池负极材料的候选材料.  相似文献   

17.
采用人工拆解、高温处理以及浓硫酸与过氧化氢溶解等方式对钴锂离子电池电极材料进行分离及成分分析,考察了浓硫酸加入量、反应温度、时间对正极材料溶解率的影响。研究结果表明:当浓硫酸加入2 m L、控制反应温度70?C、反应时间40 min时,正极材料能够在溶液中很好地溶解,溶解率最高可达92.1%。通过定量分析发现,该锂离子电池正极材料中钴的含量最大,质量分数可达29.52%。与铜钴硫化矿、含钴黄铁矿等矿石相比,该锂离子正极材料的钴丰度较高,极具回收价值。  相似文献   

18.
随着碳达峰、碳中和成为全球共识,电化学储能技术和相关产业得到了飞速发展,与此同时电极材料的需求也与日俱增。因此,如何利用来源广泛、成本低廉的前驱体制备高性能负极材料成为国内外研究的热点。煤炭因具有碳含量高、储量丰富和价格低廉等特点成为最有潜力的负极材料前驱体。近年来,研究者以煤炭为原料制备了无定型碳、石墨、碳纳米管和石墨烯等负极材料,并对其在锂离子电池中的应用进行了深入研究。总结了三类典型的煤基碳负极材料在锂离子电池中应用的研究进展,并对其合成方法、优化改性及电化学性能等方面进行了综述,最后对煤基碳负极材料的发展及应用进行了展望。  相似文献   

19.
硅(Si)作为目前理论容量最高的一种负极材料,被认为是最有前景的一种锂离子电池负极材料,但较大的体积膨胀和较差的导电性限制了其在锂离子电池当中的应用。在硅电极体系中,选择一种合适的粘合剂对于硅电极的机械完整性和电子完整性起着至关重要的作用。总结了硅负极材料的容量衰减机理,介绍了粘合剂结构的不同对硅电极性能的影响以及新型的导电粘合剂在硅电极方面的应用。  相似文献   

20.
Li[Ni1/3Co1/3Mn1/3]O2(L333)具有比容量高、价格低、60℃温循环性好等特点,是有很大开发潜力的锂离子电池正极材料.文中用不同方法制备L333前驱体,采用不同锂配比和不同固相反应温度合成L333,对L333的晶型结构特征、循环性能、安全性能进行了系统的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号