首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
以机器翻译技术为核心的多语信息处理研究   总被引:1,自引:0,他引:1  
该文介绍了哈尔滨工业大学教育部-微软语言语音重点实验室在多语信息处理方面的研究进展和成果.首先综述了国内外的研究现状,然后重点介绍在统计机器翻译、机器翻译应用、机器翻译评价、跨语言信息检索等方面的研究工作.  相似文献   

3.
Recent years have witnessed the rapid growth of social multimedia data available over the Internet. The age of huge amount of media collection provides users facilities to share and access data, while it also demands the revolution of data management techniques, since the exponential growth of social multimedia requires more scalable, effective and robust technologies to manage and index them. The event is one of the most important cues to recall people’s past memory. The reminder value of an event makes it extremely helpful in organizing data. The study of event based analysis on social multimedia data has drawn intensive attention in research community. In this article, we provide a comprehensive survey on event based analysis over social multimedia data, including event enrichment, detection, and categorization. We introduce each paradigm and summarize related research efforts. In addition, we also suggest the emerging trends in this research area.  相似文献   

4.
In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis management and decision making, monitoring the critical events over social streams will enable watch officers to analyze a whole situation that is a composite event, and make the right decision based on the detailed contexts such as what is happening, where an event is happening, and who are involved. Although there has been significant research effort on detecting a target event in social networks based on a single source, in crisis, we often want to analyze the composite events contributed by different social users. So far, the problem of integrating ambiguous views from different users is not well investigated. To address this issue, we propose a novel framework to detect composite social events over streams, which fully exploits the information of social data over multiple dimensions. Specifically, we first propose a graphical model called location-time constrained topic (LTT) to capture the content, time, and location of social messages. Using LTT, a social message is represented as a probability distribution over a set of topics by inference, and the similarity between two messages is measured by the distance between their distributions. Then, the events are identified by conducting efficient similarity joins over social media streams. To accelerate the similarity join, we also propose a variable dimensional extendible hash over social streams. We have conducted extensive experiments to prove the high effectiveness and efficiency of the proposed approach.  相似文献   

5.
视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置.但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位.本文提出了一种基于卷积自编码器分块学习的视频异常事件检测与定位方法,首先将视频帧进行均匀划分,提取视频帧中每一块的光流和方向梯度直方图(Histogram ...  相似文献   

6.
Online social network such as Twitter, Facebook and Instagram are increasingly becoming the go-to medium for users to acquire information and discuss what is happening globally. Understanding real-time conversations with masses on social media platforms can provide rich insights into events, provided that there is a way to detect and characterise events. To this end, in the past twenty years, many researchers have been developing event detection methods based on the data collected from various social media platforms. The developed methods for discovering events are generally modular in design and novel in scale and speed. To review the research in this field, we line up existing works for event detection in online social networks and organise them to provide a comprehensive and in-depth survey. This survey comprises three major parts: research methodologies, the review of state-of-the-art literature and the evolution of significant challenges. Each part is supposed to attract readers with different motivations and expectations on the ‘things’ delivered in this survey. For example, the methodologies provide the life-cycle to design new event detection models, from data collection to model evaluations. A timeline and a taxonomy of existing methods are also introduced to elaborate the development of various technologies under the umbrella of event detection. These two parts benefit those with a background in event detection and want to commit a deep exploration of existing models such as discussing their pros and cons alike. The third part shows the development of the major open issues in this field. It also indicates the milestones of each challenge in terms of typical models. Our survey can contribute to the community by highlighting possible new problem statements and opening new research directions.  相似文献   

7.
数据流突发检测研究与进展   总被引:2,自引:0,他引:2       下载免费PDF全文
数据流是不断变化且难以预测的。因此,在数据流中进行突发检测,是数据流内在的,固有的问题之一。所谓突发,指的是特定时间段内的数据量显著异常于其它时间段。如何实时地相对精确地检测出数据流中的突发并良好地呈现给用户,国内外已展开相关研究,并成为数据流挖掘领域的热点问题之一。论文综述国内外数据流突发检测的研究现状,归纳与分析现有研究工作的适用场景,并给出研究的焦点及热点,最后展望了该领域的前景。  相似文献   

8.
Twitter is among the fastest‐growing microblogging and online social networking services. Messages posted on Twitter (tweets) have been reporting everything from daily life stories to the latest local and global news and events. Monitoring and analyzing this rich and continuous user‐generated content can yield unprecedentedly valuable information, enabling users and organizations to acquire actionable knowledge. This article provides a survey of techniques for event detection from Twitter streams. These techniques aim at finding real‐world occurrences that unfold over space and time. In contrast to conventional media, event detection from Twitter streams poses new challenges. Twitter streams contain large amounts of meaningless messages and polluted content, which negatively affect the detection performance. In addition, traditional text mining techniques are not suitable, because of the short length of tweets, the large number of spelling and grammatical errors, and the frequent use of informal and mixed language. Event detection techniques presented in literature address these issues by adapting techniques from various fields to the uniqueness of Twitter. This article classifies these techniques according to the event type, detection task, and detection method and discusses commonly used features. Finally, it highlights the need for public benchmarks to evaluate the performance of different detection approaches and various features.  相似文献   

9.
ProSPer:一个支持proactive特性的通用型事件监控系统   总被引:1,自引:0,他引:1  
大规模网络安全监控应用中需要对网络安全态势进行动态评估,在网络出现重大安全风险前进行proac-tive特性的有效防范.把网络安全监控系统建模为事件监控系统,对满足复合时序和属性值逻辑关系的多个事件进行关联,把多个原子事件复合为语义更丰富、更抽象的复合安全事件.已有研究提出了不同的复合事件检测模型,但缺乏proactive的事件监控能力.基于时序关系并不能提高事件监控的预测能力的假设.设计了基于top-k复合事件检测模型的事件监控系统ProSPer,为网络安全监控等应用系统提供proactive特性的事件监控能力.与已有的复合事件检测系统相比,ProSPer检测复合事件时无需读取全部成分事件,这种proactive特性是非常有意义的设计.  相似文献   

10.
日志事件提取指将非结构化的日志消息解析为系统中对应的事件,是多数日志分析中必不可少的前置工作.传统的日志事件提取以批处理方法为主,需要等待所有日志数据到达再进行处理,实时性不佳.能够进行实时日志采集并处理的流处理方法逐渐成为主要研究方向,但已有的流处理方法在解析模型的构建方面存在缺陷,准确性不够高.针对上述问题,提出了...  相似文献   

11.
目前RFID复杂事件处理技术的研究主要针对集中式的处理。集中式RFID复杂事件处理技术对于海量RFID数据的处理具有很多局限性,主要表现为网络通讯代价高和处理效率低。针对集中式RFID复杂事件处理存在的问题,本文研究了分布式环境下RFID复杂事件处理的关键算法,采用一种Pull(抽取)类型的数据通讯模型来降低通讯代价,在此基础上提出了两种分布式的RFID复杂事件处理算法。实验结果表明,本文提出的分布式RFID复杂事件处理算法比集中式复杂事件处理算法更有效。  相似文献   

12.
实时复杂事件处理系统(CEP系统)用于从原子事件流中检测出复杂事件,需要确保事件处理任务在截止期内完成.确保实时性的关键问题是如何估算系统中复杂事件处理程序(CEP程序)的最坏响应时间.现有针对一般程序的估算方法需要标注对象程序中子程序执行次数的取值范围.然而,CEP程序较为复杂,难以直接获知子程序执行次数的取值范围.虽然执行次数间存在关联关系,可以间接求解出取值范围,但这样得到取值范围不够严格,使估算精度较低,因此现有估算方法难以直接使用.提出一种CEP程序的最坏响应时间估算方法.采用新标注方式,通过对CEP程序的检测结构进行分析,归纳出子程序执行次数间的关联约束,并使用关联约束进行标注,替代了标注其取值范围,避免了标注困难.实验表明方法具有较高估算精度.  相似文献   

13.
RFID复杂事件处理是一个新兴的技术领域,它用来处理大量的简单事件,并从中整理出有价值的事件。RFID事件和传统的事件相比较具有海量性、空间性和时间性、数据不准确性等特征。文中在分析RFID数据特点的基础上,对RFID复杂事件处理的关键技术进行研究和改进,主要介绍RFID数据的清洗和事件检测技术。对于RFID数据清洗部分,提出了多层次过滤的方法使得到的数据更接近真实情况,而事件检测方面则提出了局部检测和全局检测相结合的方法对相关数据进行检测以得到更有意义的数据供上层应用使用。最后,对RFID复杂事件处理的发展趋势做出展望。  相似文献   

14.
事件检测是事件处理系统最重要的研究问题之一。异常、变化和突发是三类最典型的数据流事件。本文关注如何在数据流中同时检测多种事件,首先研究了多种事件之间的联系,然后给出了基于网格聚类的统一处理方法,最后为了评估事件的严重程度,给出了打分函数。实验验证了所提方法的正确性与有效性。  相似文献   

15.

随着多云时代的到来,云际智能运维能够提前检测处理云平台的故障,从而确保其高可用性. 由于云系统的复杂性,运维数据在数据局部性和数据全局性上呈现出多样的时间依赖和维度间依赖,这给多维时间序列异常检测带来很大的挑战. 然而,现有的多维时间序列异常检测方法大多是从正常时序数据中学习到特征表示并基于重构误差或预测误差检测异常,这些方法无法同时捕获多维时间序列在局部性和全局性上的信息依赖,从而导致异常检测效果差. 针对上述问题,提出了一种基于融合学习的无监督多维时间序列异常检测方法,同时对多维时间序列的数据局部特征和数据全局特征进行建模,得到更加丰富的时序重构信息,并基于重构误差检测异常. 具体地,通过在时域卷积网络中引入自注意力机制使得模型在构建局部关联性的同时更加关注数据全局特征,并在时域卷积模块和自注意力模块间加入信息共享机制实现信息融合,从而能够更好地对多维时序的正常模式进行重构. 在多个多维时间序列真实数据集上的实验结果表明,相较于之前的多维时间序列异常检测,提出的方法在F1分数上提升了高达0.0882.

  相似文献   

16.
Clusters of mobile elements, such as vehicles and humans, are a common mobility pattern of interest for many applications. The on-line detection of them from large position streams of mobile entities is a challenging task because it requires algorithms that are capable of continuously and efficiently processing the high volume of position updates in a timely manner. Currently, the majority of approaches for cluster detection operate in batch mode, where position updates are recorded during time periods of certain length and then batch processed by an external routine, thus delaying the result of the cluster detection until the end of the time period. However, if the monitoring application requires results at a higher frequency than the one delivered by batch algorithms, then results might not reflect the current clustering state of the entities. To overcome this limitation, in this paper we propose DG2CEP, an algorithm that combines the well-known density-based clustering algorithm DBSCAN with the data stream processing paradigm Complex Event Processing (CEP) to achieve continuous, on-line detection of clusters. Our experiments with synthetic and real world datasets indicate that DG2CEP is able to detect the formation and dispersion of clusters with small latency and higher similarity to DBSCAN׳s output than batch-based approaches.  相似文献   

17.
针对当前RFID(radio frequency identification)复合事件处理技术在性能和处理分布式应用方面的不足,提出了一种基于CORBA(分布对象请求代理体系结构)的分布式复合事件处理模型以及高效的基于查询规划和代价估算的分布式复合事件处理方法。实验结果表明,该方法在处理大规模的分布式RFID应用时是有效的。  相似文献   

18.
事件库构建技术综述   总被引:1,自引:0,他引:1       下载免费PDF全文
恐怖事件、突发事件、冲突事件等特定主题事件通常对国家安全带来严重威胁,记录现实事件的事件库在态势感知、风险预警、应急决策等应用中发挥重要作用,事件库构建技术随之发展为内容安全技术的重要组成部分。事件库构建技术是一类实现从海量的非结构数据批量生成结构化事件数据的技术,由于数据环境、表示精度、应用场景的差异,出现了各类构建技术的相关研究。本文详细介绍了事件库的定义、分类和架构,按自底向上输出的数据层次,将事件库构建技术划分为事件检测、事件抽取、事件融合三类关键技术,并分别对其研究现状和进展进行了全面分析,总结了事件库的主要应用领域,最后对事件库构建技术中面临的主要挑战和关键问题进行了探讨。  相似文献   

19.
Event detection and analysis from video streams   总被引:9,自引:0,他引:9  
We present a system which takes as input a video stream obtained from an airborne moving platform and produces an analysis of the behavior of the moving objects in the scene. To achieve this functionality, our system relies on two modular blocks. The first one detects and tracks moving regions in the sequence. It uses a set of features at multiple scales to stabilize the image sequence, that is, to compensate for the motion of the observer, then extracts regions with residual motion and uses an attribute graph representation to infer their trajectories. The second module takes as input these trajectories, together with user-provided information in the form of geospatial context and goal context to instantiate likely scenarios. We present details of the system, together with results on a number of real video sequences and also provide a quantitative analysis of the results  相似文献   

20.
事件检测与事件边界检测是无线传感器网络的重要应用之一,节点故障的准确检测是提高事件与事件边界检测效率的前提.然而,目前的故障检测机制对节点故障类型分析不够明晰,导致系统可能将事件边界节点误判为故障节点,且常需要传感器节点间进行频繁通信,导致网络系统容错性能和节点利用率低下,并带来额外的能耗开销.为了达到较高的检测精度与能源利用率,提出了一种新的高效容错的无线传感网事件及其边界检测算法:利用时间相关性实现无线传感器网络事件检测,利用空间相关性实现故障检测与事件边界检测;提出了节点的信息可靠度恢复机制,使得节点能够根据网络环境的变化,自动调整节点的信息可靠度.实验结果表明,即使在故障概率较高的情况下,该策略仍然具有良好的性能表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号