首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文采用Ebsilon软件对超临界二氧化碳布雷顿循环600 MW燃煤发电系统进行仿真研究,分析该系统主压缩机入口/出口压力、再热透平入口压力、压缩分流系数以及主/再热气温对其热力学性能的影响。研究结果表明:系统发电功率和循环效率随主/再热气温的提升而升高;主压缩机入口和出口压力存在最佳值;系统循环效率受压缩分流系数的影响较大,压缩机的总耗功量随压缩分流系数的升高而增大,导致系统发电功率降低;再热透平入口压力对系统循环效率影响较小。通过遗传算法对发电系统多参数进行优化可得,当主压缩机入口及出口压力分别为7.94、30.94 MPa,再热透平入口压力和压缩分流系数分别为17.88 MPa和0.30时,系统循环效率最高可达48.89%。  相似文献   

2.
在太阳能光热发电(CSP)系统中,采用超临界二氧化碳(S-CO2)布雷顿循环相较于传统蒸汽朗肯循环可获得更高的发电效率。本文建立了塔式CSP-S-CO2布雷顿循环集成电站系统的数学模型,以最小化电站平准化度电成本(LCOE)为目标,采用联立方程法对集成系统进行了参数优化,并对循环的关键参数进行了敏感性分析。将模型应用于50 MW级塔式CSP-S-CO2布雷顿循环电站的优化设计,结果表明:当蓄热时长为8 h、透平入口温度520.85 ℃、透平和压缩机入口压力分别为25 MPa和8.63 MPa时,可将系统LCOE降低至0.817元/(kW·h),较塔式CSP-蒸汽朗肯循环(0.994元/(kW·h))降低17.81%;蓄热时长越长,系统LCOE越小;存在最优的透平入口温度、分流比和压比,使系统LCOE最小;提升透平与压缩机的等熵效率可显著降低系统LCOE。  相似文献   

3.
针对超临界二氧化碳主压缩机间冷再热再压缩布雷顿循环燃煤发电系统,建立了相关的热力学模型。通过详细的模拟仿真,研究高压透平入口压力、高压透平入口温度、主压缩机入口温度以及压力损失等关键参数对循环最佳热效率的影响。通过分析发现,提升高压透平入口压力和高压透平入口温度、降低主压缩机入口温度都有利于循环热效率的提升,压力损失的增加会导致循环效率降低。最后,将超临界二氧化碳循环燃煤机组的性能与实际运行的蒸汽循环燃煤发电机组的性能进行了比较。研究结果表明,SCO_2循环机组可以通过改进循环参数取得与水蒸汽循环相当或者更低的供电煤耗;但是在供电功率相同的情况下,SCO_2循环机组工质在锅炉里面的体积流量更大。  相似文献   

4.
锅炉排烟余热和冷端余热回收利用对提高超临界二氧化碳(S-CO2)燃煤发电系统发电效率具有重要意义。为此,本文提出一种集成排烟和冷端余热回收的S-CO2燃煤发电系统,并对该系统与常规S-CO2燃煤发电系统进行对比分析。结果表明:相比常规系统,集成排烟和冷端余热回收的S-CO2燃煤发电系统通过回收排烟余热和冷端余热,可使系统发电效率提高0.56%,发电标准煤耗率降低3.00 g/(kW·h);该系统可回收2.8 MW冷端耗散?,并有效降低锅炉传热?损7.3 MW,降低排烟?耗散4.9 MW,使得锅炉?效率提高0.65%,最终使系统?效率提高0.51%。  相似文献   

5.
使用EBSILON软件对100 MW超临界二氧化碳布雷顿循环发电系统进行仿真研究,选择以分流再压缩与再热耦合作为循环方式,讨论了关键参数包括压缩机入口压力、压缩机出口压力、再热透平入口压力、压缩机分流比对系统循环效率的影响.研究结果表明:主压缩入口压力、主压缩机出口压力、分流比、再热压力对系统循环效率有较大影响.最后使用遗传算法进行全局优化,找到了最高循环效率点的最佳关键参数.  相似文献   

6.
韩中合  赵林飞  韩旭 《热力发电》2021,50(10):21-29
基于国内外研究现状,建立了直接式超临界二氧化碳(S-CO2)再压缩塔式光热(SPT)发电系统模型,研究分析透平/主压缩机进口温度和进口压力对各子系统以及SPT集成系统总?损率的影响规律。基于正交阵列,通过遗传算法进行参数优化,以获得最小的系统总?损率,同时对第5次优化参数下的模型进行夏至日白天的时间序列计算。结果表明:透平最佳进口压力达到给定范围上限,透平最佳进口温度在784~841 ℃内,主压缩机最佳进口压力在7.68~10.00 MPa内,最佳分流系数在0.25~0.32之间;系统总?损率(SPT集成系统)最小值在70.72%~76.87%内,说明最佳循环低压并不一定要接近临界压力,最佳循环高温并不一定越高越好;不同时刻,系统总?损率由集热子系统?损率决定,8:00—11:00和16:00—18:00,定日镜?损率对其影响较大,11:00—15:00,吸热器?损率对其影响较大。本文研究结果可为S-CO2塔式光热发电系统优化设计提供一定参考。  相似文献   

7.
超临界二氧化碳(S-CO2)循环发电具有效率高和设备紧凑等优点,被认为是未来燃煤发 电领域最具潜力的技术之一。本文针对现阶段小容量系统部件全局设计和多准则评价研 究比较欠缺的问题,提出了系统结构设计-流动传热计算-多指标评价同步计算方法,并 通过计算,对比了不同系统及不同设计参数下,50 MW级S-CO2燃煤电厂的热经济性能。结果表明:透平入口参数25 MPa/620 ℃下,再压缩-再热循环燃煤电厂发电效率比再压缩循环高3.29%,平准化度电成本低2.52%;不同设计参数下,2个系统总投资成本不超过3.9×108元,锅炉成本约占总设备投资成本的80%。  相似文献   

8.
基于热力学第一、第二定律,针对超临界二氧化碳(S-CO2)再压缩循环、再压缩再热循环、部分冷却循环、部分冷却再热循环燃煤发电系统,采用MATLAB软件分别进行参数计算与分析。随后分别讨论了分流系数,主压缩机出口、入口压力对系统循环效率、各设备及系统?效率的影响,并对4种循环系统进行了对比分析。结果表明:不同循环布局下或同一循环布局,不同运行参数下,循环效率随相同参数的变化规律不同;分流系数存在使循环效率、?效率达到最高的最优值,主压缩机出口、入口压力与分流系数对循环效率的影响存在耦合关系;对于不同参数变化,系统?效率主要受不同设备?效率的影响;再热可提高系统循环效率和?效率,有部分冷却的循环对参数变化敏感度相对较低。  相似文献   

9.
再压缩二氧化碳布雷顿循环具有结构简单、循环效率高的优点。然而,再压缩循环应用于燃煤电站时面临锅炉压降大、冷却壁温高和余热利用难的问题。部分冷却二氧化碳循环凭借其本身的循环特点,在与燃煤锅炉集成时可有效缓解以上问题。利用MATLAB软件编写了600 MW部分冷却二氧化碳循环燃煤发电系统的热力计算程序。首先研究了单一参数变化时系统循环效率的变化情况。结果表明:主压缩机入口压力和温度在临界点附近约7.8 MPa/32℃时循环效率达到最大值;预压缩机工作在临界点附近时系统效率突降;分流系数和再热压力分别在0.35和17 MPa时系统效率达到最高。随后,应用粒子群算法对部分冷却循环进行参数优化,结果表明部分冷却循环在合适的设计参数条件下,可以实现接近于再压缩循环的效率。相比于再压缩循环,部分冷却循环的质量流量下降了17.46%,锅炉入口温度从462.45℃降低到429.39℃。  相似文献   

10.
本文建立了间接式超临界二氧化碳塔式太阳能热发电系统数学模型,对该系统在不同的透平入口温度、主压缩机出口压力以及循环压比下进行仿真,分析了全厂热效率的变化规律。结果表明:随着透平入口温度的升高,全厂热效率出现先增大后减小的规律,在750℃附近存在最佳透平入口温度;随着循环压比的增大,全厂热效率出现先增大后减小的规律,对于不同的主压缩机出口压力和透平出口温度均存在最佳循环压比。最后提出了该系统的2种参数优化方案,并给出主压缩机入口压力20~35 MPa、透平入口温度500~850℃范围内的参数优化值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号