首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
分层壳单元由于其模型简单,物理意义清晰,被广泛应用于建筑结构的有限元数值模拟中。该文基于隔离非线性有限元法提出了分层壳单元的高效非线性分析模型,将分层壳单元的截面变形(应变和曲率)分解为线弹性变形和非线性变形,以单元中面的高斯积分点作为非线性变形插值结点,建立了非线性变形场,并根据虚功原理,推导了分层壳单元的隔离非线性控制方程,采用Woodbury公式和组合近似法联合求解控制方程。依据时间复杂度理论的统计分析表明:该文建立的方法相较于传统变刚度有限元方法在非线性分析效率方面具有显著优势。并与有限元软件ANSYS的计算结果进行对比,验证了该文方法的准确性。  相似文献   

2.
扩展比例边界有限元法在裂纹贯穿单元采用Heaviside阶跃函数描述裂纹面两侧的不连续位移,在裂尖则采用半解析的比例边界有限元描述奇异应力场。该方法具有无需预先知道裂尖渐进场的形式,无需采用特殊的数值积分技术直接生成裂尖刚度阵,对多种应力奇异类型可根据定义直接求解广义应力强度因子的特点。该文将扩展比例边界有限元法与水平集方法相结合,进一步发展了扩展比例边界有限元法,并将其应用于解决裂纹扩展的问题。在数值算例中,通过编写完整的MATLAB分析计算程序,求解了单边缺口的三点弯曲梁和四点剪切梁的裂纹扩展问题,计算结果显示扩展比例边界有限元法能有效地预测裂纹轨迹和荷载-位移曲线。通过参数敏感性分析,还可得出该方法具有较低的网格依赖性,且对裂纹扩展步长不敏感。  相似文献   

3.
李上明 《工程力学》2013,30(2):313-317
针对坝体在水平向激励下的瞬态耦合问题和基于比例边界有限元法,推导了等横截面半无限水库的动态刚度矩阵,其值用贝赛尔函数计算。基于该动态刚度矩阵,建立了有限元法与比例边界有限元法的耦合方程,分析了水平向激励下任意几何形状的半无限水库的瞬态响应。其中,半无限水库分解成用有限元离散的任意几何形状的近场域和用比例边界有限元法模拟的远场域即等横截面半无限水库。通过比较动态刚度矩阵和动态质量矩阵模拟等横截面半无限水库的计算效率,发现它们计算精度相同,但动态刚度矩阵效率更高。数值算例表明了所发展的动态刚度矩阵与其耦合方程的正确性。  相似文献   

4.
李佳龙  李钢  李宏男 《工程力学》2019,36(9):40-49,59
实体有限元模型计算中往往需要较多的计算单元与结点数量,且这些单元状态判定以及大规模的刚度矩阵分解将消耗大量的计算资源,计算效率低。该文基于隔离非线性法理论建立了线性四面体与六面体等参单元分析模型,采用直接积分格式的6积分点替代六面体等参单元的8高斯点作为非线性应变插值点,能够在保证计算精度的同时提高单元状态判定效率。控制方程采用Woodbury公式与组合近似法联合求解,使得整个求解过程只有矩阵回代以及矩阵与向量的乘积,进一步提高了求解效率。基于时间复杂度的计算效率分析表明:随着结点自由度数目的增加,该文方法的计算效率相对传统变刚度法显著提高,数值算例验证了实体单元模型的正确性以及算法的高效性。  相似文献   

5.
陈灯红  杜成斌 《工程力学》2014,31(6):30-34,41
采用连分式算法可以有效地求解无限域动力刚度表示的比例边界有限元方程, 它具有收敛范围广、收敛速度快等优点. 该文在高频渐近连分式算法的基础上考虑了低频渐近, 发展了一种针对矢量波动方程的双渐近算法. 随着展开阶数的增加, 双渐近算法可以在全频域范围内快速逼近准确解. 引入了系数矩阵?X(i)来增强连分式算法的数值稳定性. 通过在高频极限、低频极限时满足动力刚度表示的比例边界有限元方程, 建立了递推关系以求得动力刚度矩阵. 通过二维半无限楔形体、三维均质弹性半空间数值算例表明, 双渐近算法比单渐近算法更稳定、优越.  相似文献   

6.
扩展有限元法利用了非网格重剖分技术,但需要基于裂尖解析解构造复杂的插值基函数,计算精度受网格疏密和插值基函数等因素影响。比例边界有限元法则在求解无限域和裂尖奇异性问题优势明显,两者衔接于有限元法理论内,可建立一种结合二者优势的断裂耦合数值模型。该文从虚功原理出发,利用位移协调与力平衡机制,提出了一种断裂计算的新方法X-SBFEM,达到了扩展有限元模拟裂纹主体、比例边界有限元模拟裂尖的目的。在数值算例中,通过边裂纹和混合型裂纹的应力强度因子计算,并与理论解对比,验证了该方法的准确性和有效性。  相似文献   

7.
钟红  林皋  李红军 《工程力学》2017,34(4):42-48
基于多边形比例边界有限元法和粘聚裂缝模型提出了混凝土坝坝基界面在随缝宽非线性变化的水压力驱动下的非线性断裂数值模型。混凝土和基岩采用多边形比例边界单元模拟,界面裂缝的断裂过程区采用粘性界面单元模拟。因为界面裂缝总是处于复合断裂模态,故同时引入了法向和切向的界面单元,且考虑了裂纹面作用有法向和切向任意荷载时的应力强度因子求解。以裂尖为原点,裂尖附近的位移场和应力场在径向上解析求解,在环向具有有限元精度。因此无需在裂尖附近加密网格或采用富集技术即可求得高精度的解。对于界面断裂,可模拟出与两种材料差异性相关的非1/2奇异性。断裂过程区的水压力随缝面宽度变化,采用指数函数的形式进行表征,通过参数调整可实现不同分布的水压力的模拟。水压力与粘聚力考虑为与裂缝宽度相关的组合函数,便于非线性迭代的实现。结合多边形网格生成和重剖分技术,可方便地模拟界面裂缝在水力驱动下的扩展过程。算例研究表明了该文模型的有效性,从中也可看出考虑缝内水压及其具体分布形式对研究坝的稳定性具有重要影响。  相似文献   

8.
高毅超  刘昊  唐欣薇 《振动与冲击》2020,39(12):164-169
比例边界有限元法仅需离散边界,网格划分灵活,且易于采用高阶单元,是结构动力分析的理想方法。针对有限域动力问题,基于广义特征值分解对动力刚度表示的比例边界有限元方程进行模态变换。通过选取特定的因子矩阵,简化了改进连分式算法的求解流程,提出了一种新的有限域动力刚度改进连分式求解算法。在动力刚度连分式渐近解的基础上引入辅助变量,建立了有限域动力问题的运动方程,其系数矩阵对称稀疏,可以利用现有的有限元求解器求解。正八边形板和重力坝算例表明,新算法具有良好的数值稳定性和计算精度,适用于实际工程问题的动力响应分析。  相似文献   

9.
地震易损性分析是评价工程结构抗震安全性的重要手段,但在计算过程中通常需进行大量的动力时程分析,这导致其计算效率通常较低。该文旨在建立框架结构强震下的高效动力分析与倒塌易损性计算方法。使用纤维梁单元建立框架结构数值分析模型,引入隔离非线性理论进行局部材料弹塑性行为模拟,并通过对考虑P-Δ效应的几何刚度进行矩阵分解和摄动变换,提出了能够同时对局部材料弹塑性行为和几何非线性行为进行隔离表达的纤维梁模型控制方程,结合Woodbury公式进行控制方程求解,所提方法在结构动力非线性分析时能够避免整体刚度矩阵的反复更新,显著提升了求解效率;为克服动力Woodbury公式对时间步长选取的限制,进一步建立不同时间步长下该公式中相关系数矩阵的预处理机制和自适应调度机制,提出了基于自适应Woodbury公式的框架结构高效动力分析方法,在此基础上结合多条带法,建立了结构倒塌易损性曲线的快速计算方法。使用一个9层框架结构验证了所提方法的高效性和准确性。  相似文献   

10.
胡静静  余丁浩  李钢  王睿  张晗  苏璞 《工程力学》2024,38(3):135-149

在对大型工程结构进行地震反应分析时土-结构相互作用通常不可忽略,然而,结构本身巨大的体量及考虑土-结构相互作用后引入的大范围土域模型导致计算规模通常十分庞大,由此引起的计算效率低下问题已成为制约此类结构性能分析的关键因素。该文提出一种新型土-结相互作用分析方法,并基于此实现了大型结构考虑土-结构相互作用的高效地震反应分析,建立不同接触状态下的单元法向和剪切相对位移分解方法;采用三维无厚度Goodman接触面单元格式对土与结构的接触行为进行描述,并通过插值方法对单元非线性变形进行描述,推导出隔离非线性的接触面单元控制方程;在此基础上,建立了大型工程结构考虑土-结构相互作用的整体式计算模型和高效地震反应分析方法。由于该文方法在每次迭代求解过程采用Woodbury公式计算结构响应,其仅需对一个规模极小的局部非线性矩阵进行迭代更新,避免了传统方法所需的结构大规模整体刚度矩阵实时更新分解,因而能够大幅度提高结构地震反应分析效率,数值算例验证了该文方法的有效性及高效性。

  相似文献   

11.
This study presents the development of the scaled boundary finite element method (SBFEM) to simulate elastoplastic stress wave propagation problems subjected to transient dynamic loadings. Material nonlinearity is considered by first reformulating the SBFEM to obtain an explicit form of shape functions for polygons with an arbitrary number of sides. The material constitutive matrix and the residual stress fields are then determined as analytical polynomial functions in the scaled boundary coordinates through a local least squares fit to evaluate the elastoplastic stiffness matrix and the residual load vector semianalytically. The treatment of the inertial force within the solution of the nonlinear system of equations is also presented within the SBFEM framework. The nonlinear equation system is solved using the unconditionally stable Newmark time integration algorithm. The proposed formulation is validated using several benchmark numerical examples.  相似文献   

12.
This paper focuses on a parameter identification algorithm of two-dimensional orthotropic material bodies. The identification inverse problem is formulated as the minimization of an objective function representing differences between the measured displacements and those calculated by using the scaled boundary finite element method (SBFEM). In this novel semi-analytical method, only the boundary is discretized yielding a large reduction of solution unknowns, but no fundamental solution is required. As sufficiently accurate solutions of direct problems are obtained from the SBFEM, the sensitivity coefficients can be calculated conveniently by the finite difference method. The Levenberg–Marquardt method is employed to solve the nonlinear least squares problem attained from the parameter identification problem. Numerical examples are presented at the end to demonstrate the accuracy and efficiency of the proposed technique.  相似文献   

13.
This study develops a frequency-domain method for modelling general transient linear-elastic dynamic problems using the semi-analytical scaled boundary finite element method (SBFEM). This approach first uses the newly-developed analytical Frobenius solution to the governing equilibrium equation system in the frequency domain to calculate complex frequency-response functions (CFRFs). This is followed by a fast Fourier transform (FFT) of the transient load and a subsequent inverse FFT of the CFRFs to obtain time histories of structural responses. A set of wave propagation and structural dynamics problems, subjected to various load forms such as Heaviside step load, triangular blast load and ramped wind load, are modelled using the new approach. Due to the semi-analytical nature of the SBFEM, each problem is successfully modelled using a very small number of degrees of freedom. The numerical results agree very well with the analytical solutions and the results from detailed finite element analyses.  相似文献   

14.
The study of dynamic soil-structure interaction is significant to civil engineering applications, such as machine foundation vibration, traffic-induced vibration, and seismic dynamic response. The scaled boundary finite element method (SBFEM) is a semi-analytical algorithm, which is used to solve the dynamic response of a three-dimensional infinite soil. It can automatically satisfy the radiation boundary condition at infinity. Based on the dynamic stiffness matrix equation obtained by the modified SBFEM, a continued fraction algorithm is proposed to solve the dynamic stiffness matrix of layered soil in the frequency-domain. Then, the SBFEM was coupled with the finite element method (FEM) at the interface to solve the dynamic stiffness matrices of the rigid surface/buried foundation. Finally, the mixed-variable algorithm was used to solve the three-dimensional transient dynamic response of the foundation in the time domain. Numerical examples were performed to verify the accuracy of the proposed algorithm in solving the dynamic stiffness matrix of the infinite domain in the frequency domain and the dynamic transient displacement response of the foundation in the time domain. Compared with the previous numerical integration technique, the dynamic stiffness matrix in the frequency domain calculated by using the proposed algorithm has higher accuracy and higher efficiency.  相似文献   

15.
In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi‐analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is devoted to the analysis of elastodynamic problems in 3D‐layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half‐space or full‐space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D‐layered medium. In this paper, a modified SBFEM for the analysis of 3D‐layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis. Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. In this paper, the SBFEM is firstly extended to solve electrostatic problems. Two new SBFE coordination systems are introduced. Based on Laplace equation of electrostatic field, the derivations (based on a new variational principle formulation) and solutions of SBFEM equations for both bounded domain and unbounded domain problems are expressed in details, the solution for the inclusion of prescribed potential along the side-faces of bounded domain is also presented in details, then the total charges on the side-faces can be semi-analytically solved, and a particular solution for the potential field in unbounded domain satisfying the constant external field is solved. The accuracy and efficiency of the method are illustrated by numerical examples with complicated field domains, potential singularities, inhomogeneous media and open boundaries. In comparison with analytic solution method and other numerical methods, the results show that the present method has strong ability to resolve singularity problems analytically by choosing the scaling centre at the singular point, has the inherent advantage of solving the open boundary problems without truncation boundary condition, has efficient application to the problems with inhomogeneous media by placing the scaling centre in the bi-material interfaces, and produces more accurate solution than conventional numerical methods with far less number of degrees of freedom. The method in electromagnetic field calculation can have broad application prospects.  相似文献   

19.
Among the various possible ways of dealing with notch and crack situations, the scaled boundary finite element method [SBFEM, (Wolf and Song in Finite element modelling of unbounded structures. Wiley, Chichester, 1996; Wolf in The scaled boundary finite element method. Wiley, Chichester, 2003)] has been adopted in this work. This method has been proved to be versatile, much less time consuming than the finite element method and generates highly accurate numerical predictions in cases of structures with notches and cracks. The SBFEM gives the advantage of boundary element method by reducing one dimension in modelling the structures but the mathematical formulations are more related to conventional displacement based finite element method. This method requires a certain scalability of the given structure with respect to a point called similarity center. Like in the case of the boundary element method, the structure needs to be discretized only at the surface where standard displacement based isoparametric finite element formulations are adequate. Unlike in the boundary element method, however, no fundamental solution is required by the scaled boundary finite element method. The similarity or scalability of the method requires separation of coordinates such that in the radial direction (i.e. scaling direction) it yields simple differential equations that can be solved analytically. So this approach can be considered as a semi-analytical method. Several two-dimensional examples have been analysed for crack and notch situations that are well known cases in fracture mechanics. A number of three-dimensional cases have been considered for different crack configurations that yield high order of singularity. The results, according to the authors’ knowledge are up to now unpublished in the open literature. Parametric studies are conducted for structures with bi-material interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号