首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
为了获得性能优异的碳纳米纤维负极材料并对材料的碳化工艺进行探讨,利用静电纺丝技术和高温碳化制备一维碳纳米纤维负极材料。对获得的碳纳米纤维的形貌、化学成分结构及电化学性能进行测试分析,得到优化的预氧化和碳化条件。结果表明:在预氧化条件为250℃、120 min,碳化条件为800℃、120 min条件下制得的碳纳米纤维具有较好的形貌特征及化学性能,平均直径为190 nm,此时碳结构更加有序,碳含量达到73.7%。通过组装锂离子电池测试电池充放电性能,得到在100 mA/g的电流密度下,放电比容量达到568.4 mAh/g,经过100圈循环后容量保持率达77.3%。  相似文献   

2.
为改善硅/碳纳米纤维的形貌结构并提升其储能性能,将球磨均匀的Si/TiO2粉末和聚丙烯腈(PAN)通过静电纺丝制得Si/TiO2/PAN纳米纤维膜,然后分别在氩气和氢气氛围中炭化得到Si/TiO2复合碳纳米纤维;优化了Si与TiO2的最佳配比与最适炭化温度,分析了纤维形貌、分子结构、元素分布对复合碳纳米纤维储能性能的影...  相似文献   

3.
针对Si材料储能过程中体积膨胀的问题,首先采用静电纺丝技术制备聚丙烯腈(PAN)/Si /Fe复合纳米纤维(NFs)膜,然后经化学气相沉积法在复合NFs膜上生长碳纳米管(CNTs),最后经800 ℃炭化得到PAN基Si/C/CNTs复合碳纳米纤维(CNFs)膜。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪、热重分析仪等表征复合CNFs膜的结构与性能,并将其用于锂离子电池负极进行电化学性能测试。结果表明:用添加质量分数为15% 的FeSO4(占PAN)催化剂的纺丝液制备的复合CNFs膜具有独特毛毛虫结构,其可有效提升电池的电化学性能,具有2 067.9 mA·h/g的初始放电比容量,循环400圈后仍具有851.2 mA·h/g 的放电比容量,每圈的容量衰减率仅为 0.15%。  相似文献   

4.
为更好满足柔性锂离子电池对电极材料柔性化的需求,通过静电纺丝以及热处理的方法制备了兼具柔韧性和自支撑性能的磷酸铁锂/炭黑/碳纳米纤维(LiFePO4/CB/CNFs)柔性正极材料,并对其结构和性能进行表征与分析。结果表明:合成的LiFePO4活性物质为橄榄石结构,自支撑LiFePO4/CB/CNFs柔性正极为具有较高孔隙的三维网络结构,CB和LiFePO4活性物质均可较均匀地嵌在CNFs基体中,CB在LiFePO4活性物质生成过程中对其纯度和晶体结构的形成未产生影响;当CB质量分数为0.10%和0.15%时,柔性正极均具有较好的电化学可逆性,首圈放电比容量分别为141.1和139.1 mA·h/g,首圈库伦效率分别为87.3%和87.6%,且循环100圈后仍保持性能稳定,第2圈后的库伦效率维持在99%左右。  相似文献   

5.
为更好地通过静电纺丝技术制备多孔碳纳米纤维,综述了近年来国内外静电纺丝技术实现工业化的可行性,静电纺丝制备多孔碳纳米纤维的方法、多孔结构类型以及多孔碳纳米纤维的应用等方面的最新进展。主要介绍了聚合物与聚合物共混以及聚合物与无机粒子共混静电纺丝多孔碳纳米纤维的2种方法的制备原理及所制得多孔碳纳米纤维的特点,并根据孔结构形状将多孔碳纳米纤维分为中空结构、介孔结构、多级孔结构和碳壳-蜂巢芯结构等类型。最后介绍了静电纺丝多孔碳纳米纤维在电化学、储氢、催化和吸附等领域的应用情况,并对未来多孔碳纳米纤维的发展前景进行了展望。  相似文献   

6.
碳硅复合纳米纤维作为锂离子电池负极材料,既保留了石墨材料的高电导率,又兼有硅材料的高理论比容量,是实现高效储能装置的优选方案。文章对基于静电纺丝法的碳硅复合纳米纤维制备过程进行了研究,探讨了不同制备条件对纤维结构的影响,为制备高性能锂离子电池负极材料提供了参考。  相似文献   

7.
为开发设计具有高电化学性能的碳纳米纤维电极,采用静电纺丝技术、戊二醛交联和高温炭化制备聚丙烯腈/高直链淀粉(PAN/HAS)基碳纳米纤维,并对其形貌、元素组成、石墨化晶体结构和比表面积进行了研究。结果表明:经过戊二醛交联后的碳纳米纤维呈现连通结构,并具有优异的石墨晶体和多级孔结构、较大的比表面积(647 m2/g)和较高的总孔体积(0.60 cm3/g);将其制备成电极,在三电极体系下,当电流密度为1 A/g时比电容为255 F/g,当电流密度为20 A/g时比电容保持率高达71%;经过10 000次充放电循环后,电极比电容的保持率高达99.8%,显示出优异的循环耐久性。  相似文献   

8.
用静电纺丝的方法制得聚丙烯腈纳米纤维,并在250℃下预氧化,850℃下炭化,得到碳纳米纤维.用扫描电镜观察了静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维表面形态结构的变化,采用X射线衍射和红外光谱法分析了原料聚丙烯腈粉末、静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维内部结构的变化.  相似文献   

9.
为制备具有较高孔隙率的聚丙烯腈(PAN)活性中空碳纳米纤维(AHCNF),以自行制备的PAN为原料,经同轴静电纺丝、预氧化、炭化、活化后制备得到AHCNF,借助X射线光电子能谱仪、扫描电子显微镜、比表面积测试仪研究了致孔剂对其形态与孔结构的影响。结果表明:制备的PAN共聚物环化温度较低,环化放热较缓和,有利于预氧化的进行;炭化过程将PAN表面的碳氧单键转化为碳氧双键,而活化过程将碳氧双键进一步转化为酯基;添加致孔剂和未添加致孔剂得到的PAN活性中空碳纳米纤维横截面呈明显的中空结构,纤维壁较为致密;添加致孔剂后,活性中空碳纳米纤维的总比表面积从55.719 m2/g增加到532.639 m2/g,孔容从0.070 cm3/g增加到0.312 cm3/g,介孔平均孔径从3.408 nm增加到4.309 nm,收率从27.14%降低到9.44%。  相似文献   

10.
为提高硫化镍材料的电催化析氢性能,采用静电纺丝、碳化和硫化相结合的方法,制备了NiS纳米颗粒负载于碳纳米纤维的复合材料(NiS@CNFs),并利用多种表征技术分析该复合材料的组成和结构.研究发现:当硫化反应温度为700℃时,所制备的NiS@CNFs具有最佳的电催化析氢性能,产生10 mA/cm2的催化电流密度仅需220...  相似文献   

11.
以聚乙烯吡咯烷酮作为高分子中间体,五水四氯化锡作为锡源,二氧化硅纳米颗粒作为掺杂,通过静电纺丝技术制备了二氧化锡及掺杂纳米纤维。利用二氧化锡、二氧化硅不同的化学性质,使用氢氟酸蚀刻的方法制备了多孔二氧化锡纳米纤维。采用扫描电子显微镜及投射电子显微镜观察了氢氟酸蚀刻前后纤维形貌的变化;利用X射线衍射仪以及能量色散X射线能谱仪分析了二氧化锡及掺杂纤维的晶型结构,特别是验证了纤维比表面积的变化。实验结果表明:随着掺杂二氧化硅颗粒含量的增加,二氧化锡纤维直径变粗,表面粗糙度增加;经过氢氟酸蚀刻后的二氧化锡纳米纤维出现了一定程度的溶胀现象,二氧化硅颗粒成功被蚀刻,纤维比表面积提高。  相似文献   

12.
为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。  相似文献   

13.
为获得力学性能较好的聚丙烯腈(PAN)基实心和多孔碳纳米纤维,以自制相对分子质量30万的PAN为原料,利用静电纺丝技术制备了PAN和PAN/聚甲基丙烯酸甲酯纳米纤维,经预氧化、碳化后分别获得了新型纳米纤维。利用扫描电镜观测了纳米纤维和碳纳米纤维的表面形态,并对纳米纤维和碳纳米纤维的直径分布进行了表征。结果表明:相对分子质量为30万的PAN适宜纺丝质量分数为6%,PAN纳米纤维的平均直径为1 242 nm。在PAN纺丝液中加入PMMA后,纳米纤维的平均直径下降至519 nm,且直径分布变窄;预氧化过程中施加张力可以使碳纳米纤维保持较好的纤维形状;碳化处理后的PAN和PAN/PMMA纳米纤维的直径都明显减小,前者减小为683 nm,后者为374 nm;扫描电镜照片显示,加入PMMA后PAN碳纳米纤维呈多孔结构。  相似文献   

14.
闫涛  潘志娟 《纺织学报》2018,39(12):152-157
为系统分析静电纺纳米纤维应变传感器的设计方法和材料种类对传感性能的影响,进一步明晰其传感机制,综述了碳纳米纤维、聚偏二氟乙烯和聚氨酯纳米纤维基柔性应变传感器的制备方法,比较了这些传感器的敏感系数、应变范围及稳定性等的优势与缺陷,介绍了静电纺纳米纤维材料应变传感器在人体运动、生命健康监测等领域的研究现状和发展趋势。最后提出传感器基体的应变能力及恢复性对其应变范围及稳定性具有决定性影响,其基体形成的导电网络结构在应变过程中易发生结构损伤,且初始电阻越小,基体及导电网络的有效应变范围越大,传感器的性能越好,认为未来开发具有高应变范围、灵敏性及稳定性的静电纺纳米纤维基应变传感器将是一个重要发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号