首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two metal dopants were simultaneously added into a diamond-like carbon (DLC) matrix using a KrF pulsed laser system at room temperature with no post-processing. The nanometer thin films were fabricated from carbon source targets containing the two metals of interest, Ti and Ni, in atomic percentages 2.5%, 5%, 7.5% and 10% each. Films from carbon targets containing only 5% Ni or 5% Ti were also deposited for comparison against the dual-metal containing films. Microstructure analysis shows that each individual metal reacted independently and uniquely with carbon as confirmed by XPS and surface analysis shows the presence of TiC bonds and Ni0. Therefore, there was no reaction between Ti and Ni as metals confirmed by XPS. Through this independent interaction, a superposition of microstructural properties was obtained as if the metals were doped separately into DLC. The separate interactions of the two metals with carbon were important as they were able to play separate and different roles in enhancing the properties of DLC. In addition, TEM analysis confirmed a unique self-assembly state where the nickel ions converge into nanosized clusters of ~ 5 nm in diameter and predominantly oriented in a (200) direction. The resultant films were also extremely smooth with RMS roughness of about 0.1 nm, thus retaining the inherent smoothness of DLC films. The combined Ti/Ni films could be used as substrates to grow carbon nanotubes with controlled density which could be used as cold electron emitters. Thus, it is interesting to study the growth mechanism and microstructure of the composite films.  相似文献   

2.
Internal stresses have been measured in diamond-like carbon (DLC) films deposited by d.c. plasma assisted chemical vapor deposition from methane, acetylene, or cyclohexane, and in nitrogen containing DLC films deposited from acetylene, or cyclohexane and nitrogen. The total hydrogen content in the films and the fraction of bound hydrogen have been analyzed by forward recoil elastic scattering and Fourier transform infrared spectroscopy respectively. It was found that in pure DLC films the stresses increase with increasing fraction of unbound hydrogen. The highest compressive stresses were obtained in the films deposited from methane and the lowest stresses in films deposited from cyclohexane. In the nitrogen containing DLC films the stresses decrease with increasing nitrogen content in the films. Stresses as low as 0.22 GPa were obtained in the films deposited from cyclohexane and nitrogen at a ratio of 1/15 in the plasma.  相似文献   

3.
Superconductivity was discovered in heavily boron-doped diamond thin films deposited by the microwave plasma assisted chemical vapor deposition (MPCVD) method. Advantages of the MPCVD deposited diamond are the controllability of boron concentration in a wide range, and a high boron concentration, especially in (111) oriented films, compared to that of the high-pressure high-temperature method. The superconducting transition temperatures are determined to be 8.7 K for Tc onset and 5.0 K for zero resistance by transport measurements. And the upper critical field is estimated to be around 7 T.  相似文献   

4.
Diamond-like hydrogenated carbon films have been formed at low temperatures using methane and acetylene as precursor gases. The source used was of a cascaded arc type employing Ar and Ar/H2 as carrier gases. Energies of ion species and ion densities in the plasma were measured with a mass energy probe and a Langmuir probe.The films produced were characterized in terms of sp3 content, refractive index, relative hydrogen content, hardness and adhesion. The variation of these parameters is presented as functions of precursor gas flow, process pressure, and surface temperature.Deposition rates up to 30 nm/s have been achieved using acetylene as precursor gas at substrate temperatures below 100 °C. Experiments with acetylene showed deposition rates seven times greater than with methane. The typical sp3 content of 55–78% in the films was determined by X-ray-Excited Auger Electron Spectroscopy (XAES) technique. The hardness and reduced modulus were determined by nanoindentation. Preliminary Atomic Force Microscopy (AFM) studies of the films showed a roughness below 3 nm (Ra).  相似文献   

5.
Amorphous diamond-like carbon (a:DLC) films have been doped by incorporation of iodine during the films deposition. XPS and AES analysis shows the existence of iodine atoms with constant concentration of 0.9% along the iodine doped DLC film (a:I-DLC). The optical and electronic properties of the doped films were studied. Optical measurements in the visible light show that iodine affects the interband absorption of the a:DLC films. Iodine causes decreasing of the optical energy gap, from 1.07 to 0.78 eV and affects the density of states at the conducting band. Like the optical measurements, electrical measurements show that iodine also decreases the activation energy of the films from 0.34 to 0.22 eV. This shows that although both gaps decrease, the optical energy gap remains different from that of electrical gap, also after doping.  相似文献   

6.
The heat resistance of fluorinated diamond-like carbon (F-DLC) films produced by Plasma Immersion Ion Processing (PIIP) technique was investigated by annealing F-DLC coatings in a vacuum furnace. The growth rate for the F-DLC films was approximately 0.6 μm/h. In order to see the possible change in the composition and properties of the F-DLC films, Rutherford Backscattering Spectrometry (RBS), nanoindentation and contact angle measurements were performed before and after the heat treatments. The results show that the composition and properties of the F-DLC films were unchanged up to heat treatment at 300°C for up to 30 min. Blistering and film delamination occurred for samples treated at 400°C.  相似文献   

7.
In this paper the surface properties of silicon-doped diamond-like carbon films with various Si contents on 316 stainless steel substrate by a magnetron sputtering technique were investigated. X-ray photoelectron spectroscopy was applied to determine the surface chemical composition of the films. Atomic force microscopy was used for the determination of surface roughness and topography. The sp2 contents in the films were determined with Auger electron spectroscopy, which were 67.1%, 34.2% and 25.0% for silicon contents 1%, 2% and 3.8%. The sp3/sp2 ratio increases with increasing the silicon contents in the films. Contact angles of three test liquids on the films were obtained with a Dataphysics OCA-20 contact angle analyzer. Surface free energies of the films and their dispersive and polar components were calculated using van Oss acid–base approach. Staphylococcus aureus was used for bacterial adhesion test. The experimental results showed that bacterial adhesion decreased with increasing the silicon content or with increasing sp3/sp2 ratio in the films.  相似文献   

8.
Good-quality diamond-like carbon films (6 at.% H2, 2400 kgf/mm2 microhardness, 2.7 eV bandgap, higly insulating) have been obtained by the DC glow discharge decomposition of acetylene. Mass spectroscopic thermal effusion measurements were carried out on the films deposited under different deposition conditions. Analyses of hydrogen in conjunction with hydrocarbon effusing species yield information on the microstructure and nature of C---H bonding configurations. It is shown to be a useful analytical tool to study hydrogenated amorphous carbon films of different microstructures varying from polymer-like to diamond-like.  相似文献   

9.
In situ determination of stresses in thin films can be used as an important tool to assist process development as well as to understand the thermodynamics of film formation. A simple technique for the measurement of stresses in growing films is described here. The technique consists of measuring the displacement of a laser beam reflected from the film surface. Displacement is induced by changes in the radius of the curvature of the substrate resulting from stresses in the film. The detector sensitivity at the used wavelength (635 nm) is approximately 12 mV μm−1, for which our experimental set-up is equivalent to 4 mV μrad−1. The actual data collected consist of the reflected beam displacement vs. time, and provides at any instant the value of the average stress. By knowing the deposition rate, time is directly correlated with film thickness, and the local stress can be determined. Examples of measurement of stresses in tetragonally bonded amorphous carbon films prepared by filtered cathodic arc are presented, as well as how this technique can be used to design the deposition process to virtually eliminate intrinsic stresses.  相似文献   

10.
Tungsten-containing diamond-like carbon films with different metal concentrations were investigated. The films of several hundred nanometers in thickness were deposited on the silicon wafer using RF-PECVD (radio frequency plasma enhanced chemical vapor deposition) method. During deposition, metal component was co-sputtered using DC magnetron of tungsten target. The six samples with the concentration of 3.8, 6.1, 8.0, 16.3, 24.3 and 41.4 at.% of tungsten were made. The structural analyses were performed by TEM (transmission electron microscope) and Raman spectroscopy. These results indicated that tungsten clusters were well dispersed in amorphous carbon host matrix in the case of tungsten concentration from 3.8 to 24.2 at.%. However, no such a structure can be observed in the sample with 41.4 at.%. The AC electrical resistance was measured in the temperature range of 2–300 K using four-probe method in vacuum condition. The observed temperature dependence of electrical conductivity can be expressed by σ=σ0exp−2(C0/kT)1/2 and tungsten concentration from 3.8 at.% to 24.2 at.%. In addition, the sample with 41.4 at.% showed the resistive superconducting transition at Tc of around  5.5 K.  相似文献   

11.
The purpose of this paper is to show the production and characterization of diamond-like carbon (DLC) films with incorporated crystalline diamond (CD), produced by plasma enhanced chemical vapor deposition. CD-DLC films were characterized by scanning electron microscopy, X-ray diffraction, atomic force microscopy and Raman scattering spectroscopy. Wetting contact angle, stress and friction coefficient were also evaluated. Our results demonstrated CD-DLC films are more hydrogenated and hydrophobic, with higher fiction coefficient. The stress values kept almost constantly.  相似文献   

12.
This paper examines the challenge posed by the measurement of thickness of sub-50 nm diamond-like carbon (DLC) films deposited onto silicon substrates. We compared contact profilometry (CP), optical profilometry (OP), contact atomic force microscopy (CAFM), tapping atomic force microscopy (TAFM) and X-ray reflectometry (XRR). Generally, CP, CAFM, TAFM and XRR give similar thickness values except for the case of the more compliant samples measured by CP and CAFM. Moreover, the theoretically precise XRR technique gives significant standard deviation due to the layering of the DLC film. For those transparent samples, OP always gives an erroneous measurement. These metrological artefacts are compared to calculations of mechanical deformation (CP and CAFM), energy dissipation (TAFM) and thin film interferences (OP). The OP artefact is used to extract the film’s refractive index, in good agreement with literature values. Finally, the comparative data obtained in this study also shows that the density and refractive index of the 10 nm thick films are constituently lower than those of the 50 nm thick films. This scaling effect, which is consistent with known growth mechanisms for DLC, further complicates the measurement of thickness by optical techniques.  相似文献   

13.
Diamond and diamond-like films grown by the torch flame method have been analysed by different techniques, namely scanning electron microscopy, Raman spectroscopy, electron paramagnetic resonance and catholuminescence microscopy, in order to investigate the main structural features of the different habits present in the films. A correlation between the observed crystal habits, the defect structure and the formation of diamond and/or diamond-like phases has been established. This enables a general quality assessment of the deposits and their correlation with some features usually observed in carbon films.  相似文献   

14.
Diamond-like carbon (DLC) films have been reliably deposited on YZ LiNbO3, and surface acoustic wave (SAW) velocity change has been observed. These relatively thin films increase the SAW velocity sufficiently, and they can be used for SAW devices. The cut-off behavior was observed at approximately 538 MHz in a 2-μm-thick DLC film on the LiNbO3 substrate.  相似文献   

15.
Tribological behavior of nano-undulated diamond-like carbon (DLC) films of the surface roughness ranging from 0.6 to 13.7 nm was investigated in an ambient air of 50% relative humidity. The nano-undulated DLC films were prepared by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) using nanosized Ni dots on a Si (100) substrate. The friction coefficient between the DLC film and the steel ball was characterized by a ball-on-disk type wear rig. Auger and Raman spectroscopy analysis of the debris revealed that the tribochemical reaction with environment was significantly suppressed as the surface roughness increased. Even if the rough surface increased the wear rate of the steel ball and thus the concentration of Fe in the debris, neither the oxidation of Fe nor the graphitization of the carbon in the debris occurred on the rough surface. However, the frictional behavior was affected by several factors: the composition and the size of debris, plowing effect of the rough surface, and the presence of the transfer layer on the wear scar surface.  相似文献   

16.
V. Singh  R.C. Tittsworth 《Carbon》2006,44(7):1280-1286
Composite Cr-containing hydrogenated amorphous diamond-like carbon (Cr-DLC) films were synthesized by a hybrid PVD/CVD plasma-assisted deposition process. In a recent study, it was found that Cr-DLC films with <∼12 at.% Cr possess excellent tribological properties. However, the role of Cr in inducing these characteristics is not clear. In the present report, the local structure around the Cr atoms in the latter films was studied as a function of Cr content by X-ray absorption spectroscopy. The Cr K-edge X-ray absorption near edge structure spectra show that Cr in DLC has a chemical state similar to that of chromium carbide. Analysis of the extended X-ray absorption fine structure spectra shows that at low Cr content (<0.4 at.% Cr), Cr is dissolved in the amorphous DLC matrix forming an atomic-scale composite. Simulation studies suggest that in the latter films, Cr tends to be present as very small atomic clusters of 2-3 Cr atoms. At higher Cr contents (>1.5 at.%), Cr is present as nanoparticles (<10 nm) of a defected carbide structure forming a nanocomposite.  相似文献   

17.
Optical characterization of diamond-like carbon (DLC) films non-uniform in thickness is performed using spectroscopic phase-modulated ellipsometry. This characterization is based on new formulas for the associated ellipsometric parameters of thin films exhibiting a wedge-shaped thickness non-uniformity. These formulas express the associated ellipsometric parameters by means of the density of distribution of local film thickness. The spectral dependences of the optical constants of these non-uniform DLC films are expressed using the dispersion model based on parametrization of density of electronic states. It is shown that this model of the thickness non-uniformity provides a relatively good agreement between the experimental and theoretical data, indicating that the results of the optical characterization of the non-uniform DLC films are close to the correct results. Moreover, it is shown that the model of uniform thin films is unsuitable for the optical characterization of the non-uniform DLC films studied.  相似文献   

18.
A recently suggested method to measure the elastic modulus of diamond-like carbon (DLC) films was reviewed. This method used a DLC bridge or free overhang which is free from the mechanical constraint of the substrate. Because of the high residual compressive stress of the DLC film, the bridge or the overhang exhibited a sinusoidal displacement on removing the mechanical constraint. Measuring the amplitude and wavelength of the sinusoidal displacement made it possible to measure the strain of the film which occurred by stress relaxation. Combined with independent stress measurement using the laser reflection method, this method allowed the calculation of the biaxial elastic modulus of the DLC film. This method was successfully applied to obtain the elastic properties of various DLC films from polymeric hydrogenated amorphous carbon (a-C:H) to hard tetrahedral amorphous carbon (ta-C) films. Since the substrate is completely removed from the measurement system, this method is insensitive to the mechanical properties of substrate. The mechanical properties of very thin DLC films could be thus measured and then can reveal the structural evolution of a-C:H films during the initial stages of deposition.  相似文献   

19.
A series of hydrogen-free diamond-like carbon (DLC) films were deposited by a mid-frequency dual-magnetron sputtering under basic conditions of Cr and C target power density between 6 and 18 W/cm2, bias voltage in a range of − 100 V to − 200 V, and a pure argon atmosphere. Microstructure, microhardness, adhesion, friction and wear properties were investigated for the DLC films to be used as protective films on cutting tools and forming dies, etc. The DLC films exhibited some combined superior properties: high hardness of 30–46 GPa, good adhesion of critical load of 50–65 N, and friction coefficient about 0.1 in air condition. Properties of the magnetron-sputtered carbon films showed a strong dependence on flux and energy of ion bombardment during growth of the films.  相似文献   

20.
介绍了类金刚石薄膜的结构、制备方法及其在橡胶表面改性中的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号