首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米晶复合SrM永磁铁氧体的制备和交换耦合作用   总被引:7,自引:0,他引:7  
采用sol-gel方法制备M型六角锶铁氧体。利用X光衍射、透射电子显微镜和VSM对纳米晶样品进行了研究。当热处理温度小于 80 0℃ ,样品存在复相。在同样条件下 ,压成薄片的样品存在硬磁与软磁SrFe12 O19/γ Fe2 O3 的纳米复合相的磁性交换耦合作用。温度为 80 0℃的薄片样品 ,比饱和磁化强度σS 为 75 .6emu/g ,内禀矫顽力Hcj 为6 0 15Oe ,最大磁能积 (BH) Max 为 1.87MGOe ,而粉末样品相应的分别为 75 .9emu/ g ,6 40 0Oe和 1.5 2MGOe。当热处理温度大于 85 0℃时 ,只有单一M相  相似文献   

2.
核壳结构SrFe12O19NiFe2O4复合纳米粉体的吸波性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以Fe(NO3)3、 Ni(NO3)2和Sr(NO3)2为主要原料, 通过两步柠檬酸盐溶胶-凝胶法, 制备出核-壳结构SrFe12O19-NiFe2O4磁性纳米复合粉体。采用XRD、 TEM、 VSM及矢量网络分析仪对合成的粉体的结构、 形貌及吸波性能进行了分析研究。结果表明, 复合粉体的相结构与NiFe2O4含量有关, 当SrFe12O19与NiFe2O4的质量比为1∶2、 烧结温度为1050℃时, 复合纳米粉体的相与NiFe2O4接近, 核-壳结构SrFe12O19-NiFe2O4纳米复合粉体的饱和磁化强度(Ms)(51.4 emu/g)比单体SrFe12O19纳米粉体 (42.6 emu/g)的大; 但矫顽力(Hc) (336 Oe)比单体SrFe12O19纳米粉体的小, 在SrFe12O19 与NiFe2O4的矫顽力5395~160 Oe之间。在频率为8~18 GHz范围内, 微波吸收逐渐增强, 当频率为12 GHz时, SrFe12O19-NiFe2O4纳米复合粉体的微波吸收达到最大值-9.7 dB, 是一种性能优良的吸波材料。   相似文献   

3.
锶铁氧体负载磁性酸催化剂的制备和性能研究   总被引:3,自引:1,他引:2  
首次以具有优异磁学特性的锶铁氧体(Sr-Fe12O19)粒子为磁性基体,负载硫酸制备磁性催化剂SO42-/SrFe12O19。利用XRD、BET、VSM等表征手段,结合催化合成产物的表征,研究了磁性催化剂的表面性质和催化性能。结果表明制备出的SO42-/SrFe12O19的饱和磁化强度较大,易于分离。催化合成酯的研究发现催化剂重复使用6次,其作用下的酯化率仍达74%,表现出良好的回收效果。  相似文献   

4.
Highly Oriented SrM Tape Hexaferrite   总被引:1,自引:0,他引:1  
This paper reports on preparation of a magnetically anisotropic polycrystalline hexaferrite, Sr$_0.95$Ca$_0.05$Fe$_12$O$_19$, whose orientation degree is as high as 100%. The preparation uses standard ceramic techniques, including wet pressing and flowing-oxygen sintering. In this process, Ca$^+2$ions are substituted for Sr$^+2$ions in SrFe$_12$O$_19$by adding minimum impurities (Bi$_2$O$_3$and MnCO$_3$). Such a hexaferrite has a dielectric loss lower than$hbox2.3 times hbox10^-3$at 9.5 GHz, which is important for microwave applications and possibly for millimeter-wave applications. The paper describes the variation of specific saturation magnetization$sigma_ s$and magnetic crystal anisotropy field ($H_a$) with temperature ($T$), and compares the magnetic properties of the sintered hexaferrite with those of the strontium hexaferrite SrFe$_12$O$_19$.  相似文献   

5.
采用共沉淀法成功制备出具有超顺磁性的纳米Fe3O4, 并将Fe3O4与SrFe12O19复合制成复合吸波材料Fe3O4-SrFe12O19, 利用X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(PNA)对产物的物相、显微结构、磁性能和吸波性能进行了表征与分析。结果表明, 当Fe3O4与SrFe12O19质量比为1∶0.3时, Fe3O4-SrFe12O19饱和磁化强度为11.1 emu·g-1, 矫顽力0.86 Oe, 剩余磁化强度0.08 emu·g-1, 其吸波性能最佳, 最大吸收峰值为-17.7 dB,-5 dB频宽为1.3 GHz, 较Fe3O4和 SrFe12O19的最大吸收峰值分别提高247%和185%, 频带分别拓宽1.12 GHz和0.40 GHz。  相似文献   

6.
SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers of diameters about 100 nm with mass ratio 1:1 have been prepared by the electrospinning and calcination process. The SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrites are formed after calcined at 700 degrees C for 2 hours. The composite ferrite nanofibers are fabricated from nanosized Ni(0.5)Zn(0.5)Fe2O4 and SrFe12O19 ferrite grains with a uniform phase distribution. The ferrite grain size increases from about 11 to 36 nm for Ni(0.5)Zn(0.5)Fe12O4 and 24 to 56 nm for SrFe12O19 with the calcination temperature increasing from 700 to 1100 degrees C. With the ferrite grain size increasing, the coercivity (Hc) and remanence (Mr) for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers initially increase, reaching a maximum value of 118.4 kA/m and 31.5 Am2/kg at the grain size about 40 nm (SrFe12O19) and 24 nm (Ni(0.5)Zn(0.5)Fe2O4) respectively, and then show a reduction tendency with a further increase of the ferrite grain size. The specific saturation magnetization (Msh) of 63.2 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers obtained at 900 degrees C for 2 hours locates between that for the single SrFe12O19 ferrite (48.5 Am2/kg) and the single Ni(0.5)Zn(0.5)Fe2O4 ferrite (69.3 Am2/kg). In particular, the Mr value 31.5 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers is much higher than that for the individual SrFe12O19 (25.9 Am2/kg) and Ni(0.5)Zn(0.5)Fe2O4 ferrite (11.2 Am2/kg). These enhanced magnetic properties for the composite ferrite nanofibers can be attributed to the exchange-coupling interaction in the composite.  相似文献   

7.
A finely dispersed powder of strontium hexaferrite doped with aluminum of the composition SrFe12?x Al x O19 with an aluminum content x = 0.6 ± 0.1 is prepared through crystallization of oxide glasses. The powder is characterized by a saturation magnetization of 60.2 A m2/kg and a coercive force of 550 kA/m. The hexaferrite particles predominantly have the shape of thick hexagonal platelets with a diameter ranging from 300 to 500 nm and a thickness-to-diameter ratio varying from 0.3 to 0.5. Magnetic coatings on tin and cardboard substrates are produced by cold rolling of strontium hexaferrite powders. It is shown that hexaferrite particles in the magnetic coatings have the preferred orientation of the well-developed facets along the rolling plane, which manifests itself in anisotropy of the magnetic properties of the coatings. The degree of texturing in the strontium hexaferrite coatings on cardboard and tin substrates is equal to 44 and 66%, respectively.  相似文献   

8.
Strontium hexaferrite powder synthesized conventionally in-house from strontium carbonate and hematite (Fe2O3) without using additives has been treated in a static nitrogen atmosphere and subsequently calcined in static air. The phase identification studies by means of X-ray diffraction (XRD) and thermal magnetic analysis (TMA) indicated the decomposition of the strontium hexaferrite and the reduction of the resultant iron oxide (Fe2O3) during the reaction with nitrogen. High-resolution scanning electron microscopy (HRSEM) studies show that the reduction occurring during nitrogenation results in the conversion of some of the large grains into much finer sub-grains. Strontium hexaferrite, Fe3O4, and Sr7Fe10O22 were the main phases obtained after reduction. However, weak traces of other phases, such as Fe2O3, were also detected. The hexaferrite phase re-formed on subsequent calcination. The magnetic measurements indicated a significant decrease in the intrinsic coercivity during nitrogenation due to the formation of Fe3O4. However, after a re-calcination process, the remanence and maximum magnetization (i.e., magnetization at 1100 kA/m) exhibited values close to the initial values before treatment, but the value of the intrinsic coercivity was higher than that prior to nitrogenation. Examination of the re-calcined microstructure showed that this could be attributed to the fine grains that originated from the fine sub-grain structures formed in the powder particles during nitrogenation.The optimum time, initial gas pressure, and temperature of nitrogenation and the optimum temperature of re-calcination were investigated using a vibrating sample magnetometer (VSM), XRD, and HRSEM. The optimum temperature for nitrogenation was 950 and 1000 °C for re-calcination. The optimum time and initial nitrogen pressure were 5 h and 1 bar, respectively. The highest intrinsic coercivity obtained after re-calcination was 340 kA/m.  相似文献   

9.
The composite nanofibers of SrTiO3/SrFe12O19 with a molar ratio of 1:1 and diameter about 120 nm were prepared by electrospinning. Effects of calcination temperature on the formation, crystallite size, morphology and magnetic property were studied by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The binary phase of strontium ferrite and titanate was formed after being calcined at 900℃ for 2 h and the composite nanofibers were fabricated from nanograins of SrTiO3 about 24 nm and SrFe12O19 around 33 nm. The crystallite sizes for the nanofibers increase with increasing calcination temperature and the addition of SrTiO3 has an obvious suppression effect on SrFe12O19 grain growth. The specific saturation magnetization and remanence tend to increase with the crystallite size. With increasing calcination temperature from 900 to 1050℃, the coercivity increases initially, achieving a maximum value of 520.2 kA·m-1 at 950℃, and then shows a reduction tendency.  相似文献   

10.
以具有优异磁学特性的锶铁氧体(SrFe12O19)粒子为磁性基体, 负载固体酸制备锶磁性固体酸催化剂S2O82-/ZrO2-SrFe12O19。利用XRD、 比表面积测试(BET)、 振动样品磁强计(VSM)、 IR等表征手段, 研究了磁性催化剂的表面性质和催化性能。结果表明: SrFe12O19的掺入提高了介稳的四方晶型t-ZrO2的热稳定性; 固体酸的磁性能较好, 饱和磁化强度(Ms)在30.0 emu·g-1左右, 矫顽力(Hc)大于3900 G, 有利于磁分离和重复使用; BET表面积为16.0 m2·g-1, 平均孔径为8.16 nm, 属于介孔磁性材料; 以乌桕油与甲醇的酯交换为探针反应的研究表明, 该固体酸能在较短时间内有效发挥催化作用。  相似文献   

11.
以自制碳酸锶(SrCO3)和钛酸丁酯为原料,采用超声波技术制备了以锶铁氧体(SrFe12O19)为载体的锶磁性光催化剂(TiO2-SrFe12O19)。采用XRD、IR、VSM、N2吸附实验等手段研究了催化剂的表面性质和磁学特性。结果表明,该催化剂的平均晶粒尺寸在20~30nm之间,比表面积为44.8m2/g,平均孔径为7.09nm,属于介孔磁性材料;饱和磁化强度(Ms)为12.9A.m2/kg,矫顽力(Hc)为120.9kA/m,易于磁分离和重复利用。催化剂对亚甲基蓝(MB)的催化降解脱除率为94.7%,且重复使用3次,催化降解效率不低于88%,表明催化性能稳定,重复使用效果良好。  相似文献   

12.
Strontium hexaferrite powder, synthesised conventionally in-house from strontium carbonate (SrCO3) and hematite (Fe2O3) without additives, has been treated in a static hydrogen atmosphere and subsequently calcined in static air under different conditions. The optimum time, temperature, and initial pressure of hydrogenation and the optimum temperature of re-calcination for a fixed time of 1 h were determined using a combination of X-ray diffraction, vibrating sample magnetometer, and high-resolution scanning electron microscope techniques.Increasing the temperature, initial pressure, and time of hydrogenation up to the determined optimum values resulted in the decomposition of the strontium hexaferrite into Fe2O3 and Sr7Fe10O22, together with a more marked reduction of the resultant Fe2O3 to Fe. This was accompanied by the conversion of the initial single-crystal particles into very fine sub-grains, which is the reason for the higher coercivities obtained after re-calcination. Increasing the hydrogenation and re-calcination parameters beyond the optimum values, however, generally resulted in grain growth, which decreased the final magnetic properties. Increasing the re-calcination temperature to 1000 °C resulted in completion of the hexaferrite reformation. Beyond this temperature, however, the coercivity decreased due to grain growth.The optimum conditions were as follows: hydrogenation at 700 °C for 1 h under an initial pressure of 1.3 bar and then re-calcination in air at 1000 °C for 1 h. The highest coercivity obtained after re-calcination was around 400 kA/m. The remanence and saturation magnetization values were very similar to their initial values before the hydrogen treatment.  相似文献   

13.
汪滨  李从举 《材料导报》2011,25(24):107-110,114
以硝酸钡、硝酸铁和柠檬酸为原料,采用溶胶-凝胶法制备了单相钡铁氧体(BaFe12O19)纳米粉体,并进一步研究了n(Fe)/n(Ba)、热处理温度对产物组成、形貌以及磁性能的影响。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)分别对样品的组成、形貌和磁性能进行了表征。实验结果表明,当煅烧温度不变时,样品的晶粒尺寸随着n(Fe)/n(Ba)的增大而变大,磁性能随n(Fe)/n(Ba)的增大而增强;当n(Fe)/n(Ba)不变时,样品的晶粒尺寸随着煅烧温度的升高而变大。当n(Fe)/n(Ba)=12时,在800℃煅烧2h得到单一晶型的钡铁氧体粉体。1000℃时样品的磁性能最佳,饱和磁化强度(Ms)为70.88A.m2/kg,矫顽力(Hc)为372.89kA/m。  相似文献   

14.
六角铁氧体由于其具备高温下的低场磁电耦合特性,有望应用于新型多态存储器及磁电传感器等微电子器件。利用Ti^4+离子对M型六角铁氧体BaFe12O19进行B位掺杂,不仅可以调控材料的磁结构和磁学特性,同时,Ti离子在六角铁氧体B位的不等价掺杂还可以产生相关缺陷、载流子和变价Fe离子进而改变其电学特性。本研究采用固相烧结法制备了M型六角铁氧体BaFe12–xTixO19(x=0,0.5,1,1.5)陶瓷,并对其进行了性能表征和测试,研究了B位Ti^4+掺杂对材料结构、磁学和介电特性的影响。研究结果表明,BaFe12–xTixO19呈现上、下自旋反平行的亚铁磁序。当Ti^4+离子掺杂量较低时,更易取代位于上自旋格子的Fe3+离子,其磁化强度随Ti掺杂量的增加而减小;随着Ti4+离子掺杂量的进一步增加,位于下自旋格子的Fe^3+离子也会逐渐被取代,此时,饱和磁化强度随掺杂量的增加而增加。此外,Ti^4+离子的引入也会使晶粒内部呈现半导性,在晶粒/晶界处产生Maxwell-Wagner界面极化,故而M型六角铁氧体BaFe12–xTixO19陶瓷会出现明显的低频介电增强并伴随着Maxwell-Wagner介电弛豫。  相似文献   

15.
混合导体氧化物SrFeCo0.5Oy粉末的微波合成与表征   总被引:4,自引:0,他引:4  
采用微波加热方法与常规高温固相法合成了Sr-Fe-Co-O系混合导体陶瓷氧化物粉末.利用XRD,TEM/EDX及SEM等测试方法分析与表征粉体.用微波加热合成的粉体颗粒尺寸分布均匀,一次颗粒尺寸较小,结晶度也好于用常规加热合成的粉体.微波加热合成粉体的结晶相结构是钙钛矿结构Sr(Fe,Co)1.5Oy相,并有少量的正交结构相和尖晶石(Co,Fe)3O4相;高温固相法合成粉末由Sr4(Fe,Co)6O13±δ相及少量的Sr(Fe1-xCox)O3-δ相和CoO相组成.  相似文献   

16.
In this work, the magnetic and structural properties of the system Pb1?x Sr x Fe12O19 (x=0.1,0.3,0.5,0.7 and 0.9) are reported. The samples were prepared by the traditional ceramic method. All the compounds are isostructural with the strontium hexaferrite (SrFe12O19). X-ray powder diffraction was used to carry out the quantitative analysis of phases and to determinate the crystallographic parameters. It was found that the compound consists of only one phase and that the coercivity, remanence and saturation increased with the strontium content. The initial susceptibility was also obtained and results are discussed in terms of the magnetization mechanisms produced by the effect of the substitution on the hexaferrite. Furthermore, Néel temperature measurements indicate a strengthening of the exchange interactions with increasing strontium content.  相似文献   

17.
用电弧法制备含铁的单壁碳纳米管(SWCNTs), 并将其提纯之后掺杂到用溶胶-凝胶自燃法制备的M型六角钡铁氧体(BaFe12O19)纳米晶粉体中, 得到了具有网状结构的复合材料。利用同轴法测试了样品的电磁参数, 研究了不同混合比SWCNTs/BaFe12O19 复合材料的吸波性能。结果表明: 复合粉体SWCNTs/BaFe12O19的磁损耗主要是由于自然共振和交换共振引起的; 当掺杂2%(质量分数)SWCNTs时, 微波反射衰减最大值可以达到 24.85 dB, 高于10 dB的频带宽度可以达到6.30 GHz, 具有较宽的吸波频段。   相似文献   

18.
以聚乙烯吡咯烷酮(PVP)和金属盐为原料,利用静电纺丝法成功制备出了摩尔比为1:1的SrTiO3-SrFe12O19磁电复合纳米纤维。并通过FT-IR,XRD,SEM和VSM等技术对纤维前驱体及其产物的结构、热处理产物的物相、形貌及磁性能进行了表征。结果表明,样品经900℃焙烧2h后,即可得到纯的SrTiO3和SrFe...  相似文献   

19.
用溶胶-凝胶法制备了La、Ce、Zn掺杂锶铁氧体Sr0.7La0.15Ce0.15Fe11.7Zn0.3O19纳米粉晶,再通过原位聚合反应法制备了掺杂锶铁氧体/聚苯胺(PAn)复合材料.用XRD、SEM、FTIR对样品进行表征,用微波网络分析仪测量了样品在2~12.4GHz频率范围的微波反射率(R).研究结果表明,聚苯胺包覆于掺杂锶铁氧体粒子表面,Sr0.7La0.15Ce0.15Fe11.7Zn0.3O19/PAn微波吸收性能优良,具有磁损耗和电损耗协同作用.复合样品厚度为3mm时,10GHz频率位置吸收峰值为-28dB,10>dB吸收带宽为4.7GHz.从R随频率变化的曲线趋势看,最佳匹配厚度为2.6mm,吸收峰值接近-40dB,峰值频率高于12.4GHz,>10dB吸收带宽预计达到5.5GHz.  相似文献   

20.
Al-substituted M-type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号