首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以离子液体为溶剂,引入Fe_3O_4纳米颗粒与磺化基团,制备磁性磺化纤维素微球(MSCB)。采用扫描电子显微镜、X射线衍射、热重分析以及傅里叶变换红外光谱等对MSCB的微观结构与化学结构进行了表征,并研究反应时溶液pH、Cu~(2+)初始质量浓度以及吸附时间对Cu~(2+)吸附量的影响。结果表明,当溶液pH为6、Cu~(2+)初始质量浓度为100 mg/L、吸附时间为90 min时,MSCB对Cu~(2+)吸附效果最好,最大吸附量为87.64 mg/g。磺酸基团和球状多孔结构可以提升MSCB的吸附性能。MSCB吸附Cu~(2+)的过程符合准二阶动力学方程与Temkin吸附等温模型。在二次吸附后,重复吸附效率仍保持在84%以上。Fe_3O_4纳米颗粒的加入使MSCB具备敏感的磁响应以及回收利用价值。  相似文献   

2.
改性玉米秸秆对铜离子的吸附性能   总被引:1,自引:0,他引:1  
为提高玉米秸秆吸附重金属的能力,以次磷酸钠为催化剂,通过柠檬酸对秸秆改性制备金属离子吸附剂,并采用红外吸收光谱与扫描电子显微镜对其化学结构和微观结构进行了表征。对比研究玉米秸秆改性前后对Cu~(2+)的吸附性能,考察了pH、初始浓度、吸附温度和吸附时间等因素对Cu~(2+)吸附量的影响。研究结果表明,当Cu~(2+)溶液初始质量浓度为30mg/L、秸秆投加量为1.0g/L、pH为5.5、吸附温度为25℃、吸附时间为30min时,柠檬酸改性玉米秸秆对Cu~(2+)的吸附效果最好,最大平衡吸附量可达26.5mg/g,相比未改性玉米秸秆提高了1.9倍,Cu~(2+)去除率可达89%。吸附动力学研究表明,改性秸秆对Cu~(2+)吸附动力学符合准二级动力学模型。  相似文献   

3.
采用反相悬浮法,以环己烷为油相,Cu~(2+)为印迹模板,制备了一种新型的印迹壳聚糖微球。正交实验结果表明,20m L3%的壳聚糖溶液中戊二醛用量为0.8m L、45℃下交联5min,3%NaOH固化2.5h,吸附剂性能最佳。通过扫描电镜(SEM)和X衍射(XRD)进行表征,结果表明微球表面有许多沟壑,结晶度降低。吸附条件优化结果为:300mg/L Cu~(2+)溶液、pH为5、吸附剂投加量0.06g、吸附4h时吸附量达到91.39mg/g。印迹微球在一元和二元金属离子体系中对Cu~(2+)均有较好的吸附选择性,可用于溶液中Cu~(2+)的富集和分离。  相似文献   

4.
利用主链含双酚酸钠链节的聚芳醚砜(PAES-C-Na)吸附剂处理同时含Pb~(2+)、Cu~(2+)、Cd~(2+)的水溶液,并通过火焰原子吸收分光光度计测试溶液中金属离子浓度;研究了溶液pH、吸附剂量、初始浓度以及吸附时间等因素对同步吸附的影响,且同步吸附行为采用伪一阶和伪二阶动力学方程进行模拟。结果表明,PAES-C-Na吸附共存金属离子主要是通过表面的羧基功能基团与金属离子之间的离子交换和静电作用实现,同步吸附动力学实验表明PAES-C-Na对金属离子的吸附采用伪二阶动力学方程拟合效果最好,即金属离子的同步吸附以化学吸附为速率控制步骤,其吸附量由大到小顺序为Pb~(2+)(26.02 mg/g)、Cu~(2+)(20.52mg/g)、Cd~(2+)(12.21mg/g)。  相似文献   

5.
通过生物培养的方式制备了细菌纤维素(BC),并对其进行偕胺肟化改性制成了偕胺肟化细菌纤维素(AOBC)纳米纤维膜。对纳米纤维膜的表观形态和热力学性能进行测试,利用Cu~(2+)和Zn~(2+)溶液对纳米纤维膜的金属离子吸附性能进行研究。结果表明,改性后的AOBC纳米纤维膜的力学性能有所提高,且具有优异的离子吸附性能。AOBC纳米纤维膜对于Cu~(2+)和Zn~(2+)的最大吸附量分别为111.20mg/g和108.09mg/g。  相似文献   

6.
用盐酸羟胺改性柚子皮制备一种新型的生物质吸附剂,通过模拟废水吸附试验研究了其对Cu~(2+)的去除效果。从模拟废水的pH、吸附时间、吸附剂用量和反应温度4个方面分别考察了改性柚子皮吸附剂对铜离子去除的影响。以溶液的吸光度和电导率来表征吸附性能。实验结果表明:吸附反应时间、吸附剂加入量、反应温度和模拟废水的pH等4个因素对吸附剂性能均有明显影响,其中当Cu~(2+)的初始质量浓度为100mg/L,温度为35℃,溶液pH=4,吸附剂质量为吸附剂/吸附质质量的15%,吸附时间为25min时,吸附率最高。  相似文献   

7.
以醋酸纤维素(CA)和聚偏氟乙烯(PVDF)为膜材料,以N,N-二甲基乙酰胺(DMAc)为溶剂,制备PVDF/CA共混超滤膜,经过表面接枝共聚和偕胺肟化改性,制备PVDF/CA-g-PAO螯合膜,用于去除污水中的重金属离子。采用红外光谱、扫描电镜、紫外分光光度计、光谱分析仪对PVDF/CA-g-PAO螯合膜进行表征,考察螯合膜对Pb~(2+)和Cu~(2+)的吸附性能。结果表明,PVDF/CA-g-PAO螯合膜对Pb~(2+)的去除率达到98%,对Cu~(2+)的去除率仅为20%。在分离性能变化不大的情况下,PVDF/CA-g-PAO螯合膜既能去除水中有机污染物,又能吸附重金属离子。  相似文献   

8.
为获得对Cu~(2+)具有良好吸附性能的吸附材料,采用戊二醛化学交联氨基硫脲并与竹浆纤维素进行反应,制备纤维素-氨基硫脲吸附材料(Bamboo pulp cellulose-g-thiosemicarbazide, BPC-g-TSC)。利用场发射扫描电子显微镜(FE-SEM)、傅立叶红外吸收光谱(FT-IR)仪和有机元素分析仪对竹浆纤维素和BPC-g-TSC进行表征分析,并研究了不同条件(pH值、接触时间、Cu~(2+)初始浓度等)对Cu~(2+)吸附性能的影响。结果表明:纤维素被氨基硫脲成功修饰;BPC-g-TSC对Cu~(2+)的吸附最佳pH值为7,在吸附4 h后基本达到吸附平衡,平衡吸附量为51.40 mg/g;吸附过程较好地符合准二级动力学模型和朗格缪尔等温吸附模型,说明吸附过程主要是以单层的表面吸附和化学吸附为主,理论最大吸附容量为121.95 mg/g。通过该研究可制备出一种对Cu~(2+)具有良好吸附性能的吸附材料,在废水处理领域具有潜在的应用前景。  相似文献   

9.
采用静电纺丝法制得CS/PVA纳米纤维膜,并将其作为对铜、镉离子的吸附材料。通过扫描电子显微镜(SEM)观察到CS/PVA纳米纤维细而均匀且呈不规则的网状结构。力学性能测试结果表明CS/PVA纳米纤维膜的稳定性较好,为其广泛应用于金属离子吸附材料提供前提。系统探讨了吸附时间、pH值、金属离子初始浓度对吸附性能的影响。结果表明,CS/PVA纳米纤维膜对Cu~(2+)、Cd~(2+)的吸附作用在2 h内即可快速达到平衡,其吸附容量随着金属离子初始浓度、溶液pH值的增加而增大。此外,在100 mmol/L的稀盐酸(HCl)溶液中,Cu~(2+)、Cd~(2+)的脱附率在1min内可分别达到86.7%和91.3%。  相似文献   

10.
以正硅酸乙酯为无机组分,季铵化壳聚糖为有机组分,通过溶胶-凝胶法制备一系列不同正硅酸乙 酯质量分数的季铵化壳聚糖/正硅酸乙酯(q-CS/TEOS)复合阴离子交换膜。利用红外光谱分析(FT-IR)对膜的 化学结构进行表征。另外,利用得到的杂化膜对水溶液中的Cr(Ⅵ)离子进行吸附性能考察。实验对吸附时间、体系 pH 值、溶液温度等因素对吸附性能的影响进行考察。结果表明,正硅酸乙酯质量分数为38%的杂化膜在吸附时间 180min、pH 值5.0~8.0、溶液温度35℃的条件下对Cr(Ⅵ)离子吸附性能较好。  相似文献   

11.
为制备出一种绿色环保、重金属离子吸附性能良好的多孔醋酸纤维素(CA)复合纤维膜,选用天然吸附材料蒙脱土(MMT),以CA为基材,通过离心纺丝技术,设计制备MMT/CA多孔复合纤维膜,并将所得纤维膜应用于重金属离子吸附。采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)、X射线光电子能谱仪(EDS)、热重分析仪(TGA)和原子吸收光谱仪(ASS)对复合纤维的形貌结构及吸附性能进行表征。结果表明:在溶剂DCM/DMSO质量配比8∶2时成功制备出具有多孔结构的MMT/CA复合纤维膜;随着MMT质量分数的增加,其Cu~(2+)吸附量也随之增大,当质量分数为3%时最大Cu~(2+)吸附量为44.243 mg/g,并且经过5次解吸循环后,仍保持有80%以上的吸附效果。  相似文献   

12.
以硅藻土和β-环糊精(β-CD)作为原料,通过乳液聚合方法在提纯后的硅藻土表面聚合β-CD,制备硅藻土/β-CD有机无机杂化材料。采用傅里叶红外变换光谱、X射线衍射光谱、扫描电子显微镜对化学结构、结晶性能以及微观表面形貌进行表征;研究了杂化材料在吸附Cu~(2+)过程中吸附机理以及吸附的影响因素。FT-IR图显示杂化材料中出现硅藻土以及β-CD的主要基团峰值;XRD图显示杂化材料结晶峰包含硅藻土和β-CD的结晶峰;杂化材料为完整微球,结构完整。杂化材料吸附过程符合拟二阶动力学方程、Langmuir等温线模型,理论最大吸附容量为145.177 8 mg/g。吸附最佳条件为接触时间50 min,pH为7,温度20℃;在此条件下杂化材料的去除率为64.747%,比硅藻土提升20.3%,比β-CD提升21.3%,吸附效果良好。  相似文献   

13.
壳聚糖/SiO_2杂化膜制备及其对铜离子吸附性能的研究   总被引:2,自引:0,他引:2  
用硅偶联剂氨丙基三乙氧基硅烷(KH550)作为前躯体和交联剂,与壳聚糖通过溶胶-凝胶反应制备了壳聚糖/SiO2纳米杂化膜.用红外光谱对杂化膜进行表征,并研究杂化膜的溶胀性能、耐酸性能及不同的因素对杂化膜吸附重金属铜离子性能的影响.结果表明:红外光谱图显示杂化膜内有新键产生,引入了Si-O-Si结构.壳聚糖/SiO2纳米杂化膜溶胀性能降低,耐酸性能提高,吸附铜离子性能提高.当壳聚糖/SiO2纳米杂化膜中SiO2的质量分数为6.8%时杂化膜吸附铜离子性能最好.室温下溶液pH值为5、铜离子浓度为0.05 mol/L、时间为60 min时,杂化膜CSH1对铜离子有较好的吸附效果.  相似文献   

14.
制备了KOH改性低温生物质炭(low temperature biochar modified by potassium hydroxide,BC-P)、KOH改性高温生物质炭(high temperature biochar modified by potassium hydroxide,HC-P)、NaHS改性低温生物质炭(low temperature biochar modified by sodium hydrosulfide,BC-S)、NaHS改性高温生物质炭(high temperature biochar modified by sodium hydrosulfide,HC-S),并研究了溶液pH、吸附剂投加量、吸附温度和Hg~(2+)浓度等因素对上述4种改性生物质炭吸附水溶液中Hg~(2+)的影响.结果表明,BC-S对Hg~(2+)吸附效果最好,在pH为4、温度为298 K、投加量为1.2 g/L时,对10.0 mg/L的Hg~(2+)溶液中Hg~(2+)吸附量为8.48 mg/g,去除率达到97.89%.准二级动力学能很好地描述BC-S对Hg~(2+)的吸附动力学过程,其等温吸附过程符合Langmuir吸附等温线,吸附热力学表明298 K最有利于BC-S吸附Hg~(2+).  相似文献   

15.
以蒙脱石和钢渣为原料,采用工业淀粉作为添加剂制备蒙脱石-钢渣复合吸附颗粒,探究其对水中Cd~(2+)的吸附性能及其机理.研究结果表明,蒙脱石占复合吸附颗粒质量比为50%时,对Cd~(2+)的吸附性能最好.质量比为1∶1的蒙脱石-钢渣复合吸附颗粒在用量为15g·L~(-1)和pH值为5.5~6.5时,吸附效果最佳.在温度为25℃,pH为5.6时,1.5g质量比为1∶1的蒙脱石-钢渣复合颗粒对浓度为100mg·L~(-1)的Cd~(2+)溶液(100mL)吸附60min后,废水中Cd~(2+)的吸附率达到97.47%.通过二级动力学方程拟合复合吸附颗粒对Cd~(2+)的吸附反应,相关系数为0.998 0.吸附颗粒对水中Cd~(2+)的吸附等温式符合Langmuir方程,相关系数为0.974 5,Cd~(2+)的饱和吸附量达到9.76mg·g~(-1).Cu~(2+)和Pb~(2+)对废水中Cd~(2+)的吸附具有竞争影响,可以降低其吸附量,且Pb~(2+)的影响较大.  相似文献   

16.
针对表面加工工业园区来水量不定、水质复杂及物化预处理单元对重金属处理不完全,导致其污水处理厂的生物处理单元受到重金属影响的问题,以电镀废水中常见的Cu~(2+)为研究对象,从电镀废水活性污泥中分离得到两株对铜离子耐受能力较强的菌株,分别命名为L2和L3.考察吸附时间、p H、温度和初始Cu~(2+)质量浓度对耐铜功能菌吸附去除Cu~(2+)的影响.结果表明,在LB培养基和电镀废水培养基中,L2和L3均有较高的Cu~(2+)最小抑制浓度,且可在短时间内实现吸附平衡,最佳p H和温度均为6和28℃.在此环境条件下,Cu~(2+)最大吸附量分别为34.15和45.68 mg/g,可实现快速高效地去除废水中的重金属.  相似文献   

17.
以壳聚糖、钛酸正四丁酯等为主要原料。通过分子印迹技术制备了Pb^2+印迹杂化膜,并利用红外光谱、TGA对印迹杂化膜的结构进行了表征.研究了溶液中Pb^2+叶。质量浓度、pH、温度三个因素对印迹杂化膜吸附性能的影响,结果表明:Pb^2+质量浓度为100mg/L时,pH=3.5左右,温度60℃的条件下,该印迹杂化膜对Pb^2+有良好的吸附能力.  相似文献   

18.
采用镁替代钙掺杂改性羟基磷灰石(Ca_(10)(PO_4)_6(OH)_2,HAP)制备新型吸附剂,考察不同镁掺杂比例对Cu~(2+)去除效率的影响及温度对吸附剂吸附容量的影响,采用扫描电镜、红外光谱仪、X射线衍射仪和气体吸附仪等对吸附剂样品进行表征,并研究其对Cu~(2+)的吸附机理.结果表明:在Cu~(2+)初始质量浓度为100mg/L时,镁掺杂摩尔比[n(Mg)/n(Mg+Ca)]为1的羟基磷灰石(MHAP)对Cu~(2+)的去除率最高,达到96.2%;在温度为293~313K范围内,MHAP对Cu~(2+)的吸附容量随温度的升高而增加,最高吸附容量为370.37mg/g,相比HAP提高了62.5%;Langmuir等温方程能较好描述MHAP对Cu~(2+)的吸附行为,其吸附动力学遵循伪二级动力学模型.镁掺杂使MHAP粒径减小,比表面积增大,增强了其表面吸附和微孔吸附的作用;同时,MHAP表面官能团-OH增多,增强了其表面络合作用.  相似文献   

19.
以反相悬浮聚合法制备得到氨基淀粉/凹土/丙烯酸树脂,设计正交实验探讨了凹土与丙烯酸投料比,分散剂、交联剂、引发剂含量及油水比对树脂吸附Cu~(2+)性能的影响效果,优化了制备条件,并通过红外、热失重分析、扫描电镜等分析手段对产物结构及形貌进行了表征。对产物和氨基淀粉吸附Cu~(2+)性能的研究表明,该树脂的吸附平衡时间为45min;溶液pH值为4时,吸附效果最佳;树脂对Pb~(2+)、Cd~(2+)、Cu~(2+)、Ni ~(2+)、Zn~(2+)吸附选择性为Cu~(2+)Pb~(2+)Cd~(2+)Ni ~(2+)Zn~(2+);同等条件下,树脂的吸附性能均优于氨基淀粉的。  相似文献   

20.
针对目前制备壳聚糖膜无法控制厚度的问题,以壳聚糖(CS)为基体,将L-精氨酸固载到CS大分子上,制备L-精氨酸接枝壳聚糖(CS-L-Arginine,CA),并分别在保鲜膜、涤纶膜上刮膜,考察其成膜性、膜厚度、拉伸强力及抗菌性能.结果表明:以2%的冰乙酸溶液为分散剂、以10 g/L山梨醇为增塑剂,CA的质量分数为5%时,以涤纶膜作为刮膜底物制备的CA膜厚度均匀为0.03 mm,拉伸强力为389 c N/cm,对Cu~(2+)和Ni~(2+)离子的去除率分别为74.53%和69.36%,优于以保鲜膜为底物的CA膜,且对大肠杆菌和金黄色葡萄球菌的抑菌率高达90.23%和93.37%.这说明CA粉末在成膜后保持其对Cu~(2+)、Ni~(2+)优良的吸附性能和对大肠杆菌、金黄色葡萄球菌高效的抗菌性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号