首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对当前高炉铜冷却壁过早损坏、炉墙波动大的现状,对铜冷却壁有镶砖和无镶砖条件下的传热特性进行了深入研究,得出了延长高炉铜冷却壁寿命的关键在于延长镶砖寿命这一认识。在此基础上,提出了延长镶砖寿命的措施在于控制适当的边缘气流,以及以铜冷却壁温度为标准的合理控制区间。通过国内外高炉的案例调研,指出了控制冷却壁温度延长铜冷却壁寿命的有效性,最后提出了当镶砖脱落后可及时采取降料面喷涂来延长铜冷却壁寿命的措施。  相似文献   

2.
《炼铁》2017,(4)
结合铜冷却壁热面损坏的考察情况,对目前铜冷却壁的损坏原因及解决对策进行了详细阐述。重点分析了渣皮脱落导致的机械磨损及"氢病"对铜冷却壁寿命的影响,认为由于炉况不稳定导致的渣皮频繁脱落是造成铜冷却壁机械磨损的主要原因,"氢病"导致的铜冷却壁的膨胀加速了铜冷却壁的磨损。为延长铜冷却壁的寿命,提出了如下对策:在铜冷却壁热面设置凸台,严格控制铜冷却壁本体铜料的含氧量,改进高炉内型设计,保证高炉冷却系统设计的可靠,避免采用过度发展边沿气流的操作方针。  相似文献   

3.
建立了铜钢复合冷却壁的稳态传热模型,利用ANSYS单元生死方法模拟冷却壁表面渣皮熔化行为,分析冷却壁温度分布、渣皮厚度及热负荷。结果表明:复合冷却壁附近炉气温度是影响其传热行为和渣皮厚度的主要因素;渣皮在冷却壁表面分布不均匀,随着炉气温度升高渣皮不均匀性逐渐增加;提高水速和全铜质壁体可以有效降低壁体温度,但对热负荷、渣皮厚度影响较小;在炉气温度1 200~1 400℃范围内,复合冷却壁的铜壁最高温度为125℃,承受热负荷达到82.8 kW/m2,能够满足高炉高负荷区的冷却要求。  相似文献   

4.
车玉满  孙鹏  李连成  孙波  郭天永 《炼铁》2007,26(5):18-21
对鞍钢铜冷却壁高炉操作管理模型的建立方法进行了阐述,并对在2号高炉上的实践进行了总结.根据经验知识和实验室热态模拟实验结果,利用传热模型反推计算,建立铜冷却壁高炉操作炉型管理模型,可对铜冷却壁热面渣皮厚度进行实时计算,实现操作炉型管理.鞍钢2号高炉应用结果表明,铜冷却壁操作管理模型可对渣皮脱落部位、炉腰和炉身下部铜冷却壁热面温度和渣皮厚度变化趋势进行判断,提示操作人员及时采取措施,控制渣皮厚度适宜并保持稳定,减少铜冷却壁区域热损失,并保证高炉操作炉型合理.  相似文献   

5.
喷射成型梯度耐火材料带锚刺冷却壁   总被引:1,自引:0,他引:1  
龙世刚  孟庆民  曹枫 《炼铁》2002,21(5):24-25
1 引言 为了延长高炉冷却壁寿命进而延长高炉寿命,世界各国冶金工作者做了大量研究工作,取得了可喜的成果。但是,目前一般高炉冷却壁用镶砖或捣打耐火材料,外加砖衬,不管用什么方法都存在一个缺陷,即耐火材料与冷却壁热膨胀系数差异很大,容易脱落。高炉投产不久,冷却壁前面炉衬被侵蚀后,镶砖受到热力、机械力和化学力的作用而迅速脱落或侵蚀。高炉下部某些部位仅几个月就没有砖衬,全靠生成渣皮来保护冷却壁,但渣皮与冷却壁的热膨胀系数也相差很大,而且不稳定,故冷却壁裸露在炉内受到上述各种破坏作用而开裂、漏水甚至烧穿。  相似文献   

6.
简要分析了铜冷却壁的破损形式和破损机理,并结合首钢股份3座高炉操作实践,重点总结了铜冷却壁使用维护技术。铜冷却壁使用维护技术的关键是铜冷却壁热面必须要有一定厚度的渣皮,而要维持稳定且有一定厚度渣皮,一是炉外要强化冷却效果,二是炉内要维持良好的挂渣环境。首钢股份高炉通过控制合理的冷却水进水温度、冷却水流量和边沿煤气流分布等,投产多年以来实现了铜冷却壁零损坏的良好业绩。  相似文献   

7.
在国内外有关高炉炉型的研究中,多为关于炉腹、炉腰部位的挂渣模型研究,而炉身以上区域的炉型模型研究较少。针对这一问题,基于传热控制微分方程建立炉型管理模型,可对铜冷却壁渣皮厚度和炉身砖衬厚度进行实时计算。该模型在国内某高炉上得到了成功应用,有利于及时调整高炉操作以稳定合理的操作炉型,从而促进高炉稳定顺行和延长高炉寿命。  相似文献   

8.
对铜冷却壁在武钢大型高炉的应用情况进行了阐述。选取8号高炉为代表,对武钢铜冷却壁高炉炉墙结厚的过程进行跟踪分析,找出炉墙结厚的原因,并提出防止炉墙结厚、维护铜冷却壁高炉操作炉型的对策措施。边缘气流长期不足、操作制度未能适应入炉料结构变化、渣皮脱落后操作不合理是武钢铜冷却壁高炉炉墙结厚的主要原因。须通过十字测温和炉身热负荷管理办法,控制适宜的边缘气流,入炉料结构发生变化后要进行针对性调整,渣皮脱落后的煤气流控制要遵循疏通中心引导边缘的原则,才能从根源上消除铜冷却壁炉墙结厚现象,保持铜冷却壁高炉良好的操作炉型。  相似文献   

9.
《炼铁》2017,(2)
对沙钢5800m~3高炉铜冷却壁漏水原因及修复情况进行了总结。从2016年初开始,炉腹和炉腰部位陆续出现铜冷却壁漏水现象,认为长期过分发展边沿气流导致渣皮难以稳定,铜冷却壁反复受到液态渣、焦炭和煤气流的冲刷是漏水的原因。在采取了埋柱修复措施后,破损冷却壁附近温度得到了有效的控制,但是,冷却壁的破损对周边冷却壁使用寿命的影响,以及局部温度过高的问题仍亟待解决,否则冷却壁的破损会不断蔓延。  相似文献   

10.
对沙钢5800m^3高炉铜冷却壁漏水原因及修复情况进行了总结。从2016年初开始,炉腹和炉腰部位陆续出现铜冷却壁漏水现象,认为长期过分发展边沿气流导致渣皮难以稳定,铜冷却壁反复受到液态渣、焦炭和煤气流的冲刷是漏水的原因。在采取了埋柱修复措施后,破损冷却壁附近温度得到了有效的控制,但是,冷却壁的破损对周边冷却壁使用寿命的影响,以及局部温度过高的问题仍亟待解决,否则冷却壁的破损会不断蔓延。  相似文献   

11.
根据热弹性力学理论,建立了渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁本体和炉渣-镶砖界面应力分布的角度分析了煤气温度、冷却制度、镶砖材质和炉渣性质等因素对铜冷却壁寿命及挂渣稳定性的影响规律.计算结果表明:煤气温度的升高使铜冷却壁本体应力线性升高,同时挂渣稳定性减弱;铜冷却壁本体应力值及挂渣稳定性均随渣皮厚度增加而呈现先下降后上升的趋势,实际生产中渣皮厚度应维持在30~60 mm之间;冷却水流速的增大会导致铜冷却壁本体应力值小幅上升,但可使挂渣稳定性增强;冷却水温的提升可小幅降低冷却壁本体应力,但会显著降低挂渣稳定性;镶砖热导率的提升和炉渣热膨胀系数的减小均有利于降低铜冷却壁本体应力并增强挂渣稳定性.   相似文献   

12.
 在整个高炉结构中,炉身下部至炉腰炉腹位置是影响高炉寿命最薄弱环节之一,铜冷却壁应用该区域可形成“渣皮”作为永久性炉衬,有效延长高炉中部寿命,实现了高炉高效和长寿的统一。然而,在生产实践中渣皮频繁脱落,铜冷却壁热面裸露,导致铜冷却壁大面积破损,严重影响生产。针对鞍钢某高炉铜冷却壁破损情况进行了简单的介绍;采用金相分析、扫描电镜及能谱分析和化学分析方法,对破损的高炉炉腰段铜冷却壁进行取样研究。研究结果表明:在高炉内服役过程中,铜冷却壁中氧含量偏高,在受到高温煤气流冲蚀后,在其热面产生了“氢脆”现象,这是造成铜冷却壁破损的根本原因。提出了防止铜冷却壁破损的建议。  相似文献   

13.
建立了高炉铜冷却壁非稳态传热分析模型,利用ANSYS单元生死技术模拟了冷却壁表面的渣皮再生行为,分析了渣皮脱落后的生长规律及壁体温度和热负荷的变化过程。结果表明,渣皮生长遵循幂函数规律。经过计算,渣皮脱落0.9 min时铜壁测量点温度达到最高值59℃,经过23.5 min趋于稳定。铜冷却壁承受的最高热负荷为107.8 kW/m2,热面最高温度达到123℃。  相似文献   

14.
高炉铜冷却壁传热分析   总被引:31,自引:4,他引:27  
利用自行开发的冷却器计算机软件,计算了铜冷却壁温度场。计算结果表明:铜冷却壁能够有效地降低炉内一侧冷却壁热面温度,使其表面能够迅速凝固一层渣铁壳,从而减小炉墙热量损失和延长冷却器寿命,最终延长高炉寿命。  相似文献   

15.
 高炉铜冷却壁热面形成的渣皮是保障冷却壁寿命的关键。基于高炉中修,针对铜冷却壁热面的渣皮进行实地取样,通过化学成分分析、XRD分析以及SEM EDS分析,并结合FactSage热力学计算及激光法导热分析,对大型高炉铜冷却壁表面形成渣皮的化学成分、微观形貌、高温性能和导热性能进行系统研究,探明了大型高炉铜冷却壁热面渣皮的物相组成和基础性能。结果表明,高炉铜冷却壁渣皮具有明显的分层结构,主要物相为二铝酸钙(CaAl4O7)、硅灰石(Ca2Al2SiO7)和钙长石(CaAl2Si2O8)等;通过FactSage软件计算渣皮熔化温度和黏度,发现沿着渣皮的生长方向,熔化温度降低,流动性降低;并通过传热计算得出合理渣皮厚度条件下的热流强度,从而为高炉生产实践提供理论指导。  相似文献   

16.
沈大伟  陈名炯  佘京鹏 《炼铁》2020,39(3):7-12
针对铜冷却壁的损坏特征,就铜冷却壁的设计优化进行了探讨。铜冷却壁破损主要是热面磨损,并且具有明显的区域性(绝大部分是炉腹和炉腰交界位置),除了应从高炉设计、安装、操作维护等进行相应优化外,关键应该同步对铜冷却壁设计结构进行优化,如采用铜冷却壁热面镶嵌钢砖设计,既能提高铜冷却壁的耐磨性和挂渣能力,又能分割和支撑渣皮,以降低渣皮脱落对炉况影响。  相似文献   

17.
《炼铁》2017,(1)
对武钢5号高炉防止炉墙黏结操作实践进行了总结。面对5号高炉因入炉矿石粉末大量增加而不断重复发生的炉墙黏结问题,提出了"防黏结、早动手、微调整"的方法。主要采取控制冷却壁进水温度、调整边沿布矿量、以及调剂5号挡位焦炭负荷等措施,有针对性地改变煤气流的分布,使炉墙渣皮保持动态平衡,冷却壁水温差始终保持在4~5℃,炉墙黏结问题基本解决,保证了炉况的稳定顺行。  相似文献   

18.
 冷却壁安全工作是保证高炉长寿的基础。通过设计并建造冷却壁热态实验炉,研究了高炉铸铁冷却壁热面无渣皮和有渣皮时的非稳态传热过程,考察了不同炉气温度条件下冷却壁热电偶温度的变化规律。回归得到了炉气在升温阶段、稳定阶段、降温阶段时冷却壁热电偶温度随时间的变化关系式。计算得出了冷却壁热面在有无渣皮条件下的平均热流强度,回归得出了炉气平均对流换热系数随炉温的变化关系。结果表明,冷却壁热面在有渣皮时热电偶温度的变化速率显著低于无渣皮时的变化速率,冷却壁破损的主要原因是冷却壁温度的反复变化和渣皮的频繁脱落而产生的热应力。  相似文献   

19.
采用ANSYS建立铜钢复合冷却壁的传热和热应力模型,分析稳定挂渣及渣皮脱落后的温度和热应力分布.结果表明,炉气温度是影响壁体温度、渣皮厚度、热负荷和应力状态的主要因素.在稳定挂渣时,铜壁最高温度为124℃,热负荷81.1 kW/m2,变形量比铜质冷却壁有所减少.在渣皮脱落后,铜壁温度和应力快速上升,5 min后趋向稳定.在冷却壁裸露的情况下,铜壁和钢板之间仍然保持牢固结合.  相似文献   

20.
提高高炉炉腰及炉身下部冷却壁抗热变形能力是维持高炉长寿的关键.采用热态实验和数值模拟手段研究高炉炉腰及炉身下部区域铜钢复合冷却壁的传热及热变形行为,并与铜冷却壁进行对比分析.铜钢复合冷却壁热面无渣铁壳覆盖,煤气温度1200℃条件下,铜钢复合冷却壁最高温度为180℃,传热性能与铜冷却壁接近.铜钢界面最大等效应力约为114.45 MPa,低于铜钢复合板的抗拉强度.铜钢复合冷却壁发生弯曲变形,中心z向位移为0.66 mm,较铜冷却壁低约25.8%;顶底端沿z向位移为0.13 mm,较铜冷却壁低约50%;曲率为0.93×10-4 mm-1,较铜冷却壁低约51.81%.铜钢复合冷却壁抗变形能力优于铜冷却壁,可以避免铜冷却壁热变形过大导致的螺栓及冷却水管断裂破损问题.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号