首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
对信钢2号高炉停炉前的准备和降料面操作,以及残铁口位置确定和放残铁操作等进行了总结。2号高炉放残铁实践证明,根据理论计算和炉壳测温拐点推算,并结合其他高炉放残铁经验来确定残铁口位置比较准确。此次2号高炉停炉方案科学,组织实施严密,操作过程安全有序,成功将料面降到风口带,放出残铁约200t,与残铁理论计算值基本吻合。  相似文献   

2.
熊明炯  兰洪 《炼铁》1996,15(5):52-52
重钢炼铁厂4号高炉1995年12月5日停炉大修。这次停炉不但用冶金部高炉炉体调查小组推荐的关于计算粘土砖炉底剩余厚度的经验公式计算炉底砖剩余厚度,而且还第一次采用在高炉生产过程中和体风检修时进行炉壳表面测温(休风时关断此处冷却壁的冷却水)。两次测温均对着残铁口方向,以铁口中心线标高为第一测量点测量其纵向以下的炉壳表面温度(见表1)。根据所测炉壳表面温度分别绘出温度分布曲线(见图1),用温度分布曲线的拐点确定炉底砖侵蚀的最大深度。从图1中不难看出(曲线a、b),炉壳表面温度曲线的拐点标高最低点均在  相似文献   

3.
黄雅彬  韩磊  刘利军  马祥  于恒亮 《炼铁》2021,40(2):22-25
以包钢5号高炉为例,对包钢高炉停炉技术进步进行了总结.5号高炉在停炉前,有效控制炉缸侧壁温度,合理活跃炉缸,并对停炉料进行精准计算;在停炉降料线操作过程中,采用新型雾化装置打水进行炉顶降温,控制好风量和打水量,有效控制爆震现象,实现无爆震停炉;采用外部炉壳测温法和计算法来确定残铁口位置,残铁口位置选定准确,残铁放净,高...  相似文献   

4.
文章阐述了鞍钢鲅鱼圈1号高炉(第一代)大修停炉出残铁操作的过程以及经验总结.本次操作是鞍钢首次4000m3高炉出残铁,从出残铁方案的审定,残铁口位置的确定,残铁沟与残铁坑的设计与制作,都进行了严密的论证.从操作实践结果看,放残铁效果较好,炉缸残留渣铁较少,放残铁操作圆满成功,为高炉大修工程顺利进行奠定了基础.  相似文献   

5.
高炉出残铁     
高炉大修停炉时必须将积存在炉内的、无法从铁口放出的渣铁,通过割开炉底局部炉皮和冷却壁,烧通碳砖形成的残铁口放出.安全、顺利地出净残铁,对拆除砌体、缩短大修期,保护保留设备有着重大意义.我国五十年代修建的高炉均为粘土砖炉底.进入六十年代,不少高炉采用了高铝砖与碳砖综合风冷炉底.由于各高炉砌体质量、一代强化程度、生产条件不同,炉底侵蚀程度及残铁量相差悬殊.然而,正确判断炉底侵蚀程度,选择好残铁口位置出净残铁,却是高炉工作者共同关心的问题.  相似文献   

6.
新余钢铁集团有限公司2 500 m3高炉于2021年停炉大修,通过停炉前的准备以及停炉过程中各参数的控制,较好地完成了停炉工作;同时,根据拉姆公式推断高炉炉底侵蚀深度,综合考虑现场条件、安全等方面的因素,最终确定残铁口位置。由于受多种因素影响,致使残铁放出量较少,文中详细分析了残铁放出量少的原因以及解决措施,为今后停炉放残铁提供宝贵的生产经验。  相似文献   

7.
陈祺  陈建枝  朱卫城  张永强 《炼铁》2004,23(3):33-35
广钢3号高炉(300m^3)采用空料线打水停炉,整个过程实现了安全、顺利、快速停炉。其主要经验有:合理调整炉况;严格按照炉顶温度控制打水量;坚持大风量降料线;根据炉底、炉缸侵蚀状况,准确确定残铁口位置,放净残铁等。  相似文献   

8.
广钢3#高炉(300m3)采用空料线打水停炉,整个过程实现了安全、顺利、快速停炉。本文介绍其合理调整 炉况,严格按照炉顶温度控制打水量,坚持大风量降料线,根据炉底、炉缸侵蚀状况,准确确定残铁口位置,放净残 铁等操作实践。  相似文献   

9.
详细介绍了长钢8号高炉如何确定残铁口位置的经过,同时对放残铁的效果作了简要说明,为公司在日后的停炉放残铁工作方面积攒了一定的经验。  相似文献   

10.
武钢四高炉开炉初期原料供应、设备结构有不少问题,生产水平很低。1973年因炉身砖衬和冷却设备严重损坏准备停炉检修。为研究炉底侵蚀状况以决定大修或中修,作者用数学物理方法,以实测数据为边界条件,导出了碳砖炉底的热侵蚀计算式。计算结果与炉壳温度分布、残铁量等方法推算的相近。由于炉底侵蚀仅1米,决定四高炉中修。四高炉中修至今炉底状况良好,可认为推算是可靠的。作者还推导了碳砖炉缸的热侵蚀计算式。用此式计算的一高炉炉缸侵蚀尺寸与大修时的观测值也一致。  相似文献   

11.
近两年多来,一号高炉由于炉体破损严重,依靠打水特护艰难维持生产。1996年10月中旬进行了中修,决定八炉缺放残铁,正确确定残铁口标高位置,事关安全炉和中修能否如期完成。  相似文献   

12.
安钢2座380m^3高炉第一代炉役经济技术指标相差较大。结合大修前炉体破损情况,对这2座高炉第一代炉役生产中出现的问题进行调查研究,认为7号高炉在应用大型模块和炉腰冷却壁设计上存在不足,高炉边缘气流发展,操作炉型不合理,炉况不顺;7号高炉炉底温度偏高是炉底炭砖渗铁造成的,6号高炉炉底温度偏高是炉底串煤气所致;7号高炉铁口失常的主要原因是铁口组合砖损坏严重和该部位炉壳开裂,并提出了改进建议。  相似文献   

13.
本文简介了用震波法测定3号高炉炉底残余厚度情况和放残铁实际情况过程,并对炉内侵蚀状况进行了分析。  相似文献   

14.
熊明炯  兰洪 《四川冶金》1998,20(1):22-22
本文简要阐述了重钢四高炉,采用炉壳表面温度拐点,确定残铁口标高,缩短了大修工期。  相似文献   

15.
高炉炉缸安全是高炉长寿的主要限制环节,首钢股份公司环保限产期间对2号高炉进行了在不切割炉壳情况下的炉缸保护性清理和浇注修复施工。在此期间对高炉炉缸的破损情况进行了调研,研究了首钢股份公司 2 号高炉风口以下炉缸渣皮、风口区域、出铁口前泥包的状态和炉底陶瓷垫的侵蚀状况,并分析了造成炉缸炭砖侵蚀的原因及炉缸中钛和锌元素的物相。研究发现炉底陶瓷垫未形成锅底状侵蚀,越是靠近炉墙位置,陶瓷垫侵蚀越严重,说明了炉缸活跃度不够。而象脚区炭砖侵蚀主要是受铁、钾和硫等元素的渗透侵蚀;炉底象脚区域发现大量古铜色碳氮化钛沉积物,沉积物呈带状分布;破损炉缸中发现的大量ZnO富集物是黄绿色而非传统的白色。此次破损调研为后期炉缸浇注、高炉操作以及今后的炉缸设计提供现实可靠的依据,其意义重大。  相似文献   

16.
《炼铁》2018,(5)
结合武钢6座高炉炉缸长寿实践,围绕炉缸设计与选材、炉缸冷却壁、死铁层深度及炉缸监控等方面对高炉炉缸长寿设计进行了探讨。认为延长炉缸寿命的核心在于强化炉缸的传热能力,促进炉缸自保护渣铁壳的形成;炉缸死铁层不宜过深,应保证炉缸炉底整体侵蚀缓慢,从而最大限度延长炉缸寿命。武钢高炉采用水温差计算热流强度,炉缸测温热电偶数据和炉壳定期测温等综合手段监控炉缸服役状况,保障了炉缸长寿目标的实现,预计武钢6座高炉炉缸寿命均可达到20年以上。  相似文献   

17.
太钢高炉炉底炉缸长寿探讨   总被引:2,自引:0,他引:2  
通过分析计算确定了太钢3号高炉侵蚀预测数学模型。为了保障高炉生产的安全,根据太钢3号高炉热电偶历史最高数据预测了炉缸炉底侵蚀状况。同时应用该软件分析铁水流动、耐材导热系数、死铁层深度和高炉异常对炉缸炉底的侵蚀影响,并得出炉缸炉底长寿的若干推论,对评价目前侵蚀状况和护炉及未来太钢长寿高效高炉的建设提出若干参考意见。  相似文献   

18.
为了进一步明确柳钢4号高炉炉缸侧壁温度升高原因和炉缸侵蚀状态,通过对柳钢4号高炉炉缸结构设计、原燃料质量和生产参数进行调研分析,结合炉缸侧壁温度的变化规律和炭砖残厚的计算,分析了炉缸侧壁温度升高原因及侵蚀状态。结果表明,4号高炉炉缸冷却能力和炉缸侧壁温度监测仍有待加强;除侧壁炭砖侵蚀外,原燃料质量波动和冶炼强度增大等也是炉缸侧壁温度上升的重要原因;炉缸侵蚀最为严重的部位在铁口中心线以下1.9 m的位置,表现为“象脚”侵蚀。  相似文献   

19.
武钢2号高炉大修停炉操作实践   总被引:1,自引:1,他引:0  
熊良勇  梅炳全 《炼铁》1999,18(1):14-17
武钢2号高炉在炉墙结厚情况下实现了安全、顺利、快速停炉,其主要经验有:合理调整炉况,控制炉顶打水,控制风量、风压,避免煤气爆炸和结厚物崩落;用煤气成分变化判断断面高度,简化停炉工艺;不集中加净焦,缩短停炉时间;根据炉底、炉缸侵蚀状况准确定位残铁口,放净残铁。  相似文献   

20.
《炼铁》2014,(6)
重点阐述了鞍钢4号高炉炉缸侵蚀状况,认为炉缸2号铁口下方第2层环炭位置发生侵蚀,即"象脚"侵蚀,并向1号铁口区域发展,3号铁口也发生侵蚀。简要总结了护炉控制措施,如控制冶炼强度、含钛物料护炉、炉缸灌浆、增加炉缸监测设施、改进炉前操作等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号