首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
纳米SiO2改性环氧涂层的防腐性能   总被引:1,自引:0,他引:1  
用电化学阻抗谱法(EIS)研究纳米SiO2改性环氧涂层在3.5%NaCl(质量分数)水溶液中的腐蚀规律,结合电容法和重量法分析改性涂层的吸水行为.结果表明,添加纳米SiO2可明显改善涂层的防腐性能,添加质量分数为2%时防腐性能最好.H2O在不同PVC(pigment volume concentration)环氧涂层中传输的起始阶段满足Fick第二扩散定律.纳米SiO2虽可与环氧树脂发生物理化学键合,填充涂层孔隙,但超过临界添加量时纳米粒子团聚作用又使涂层缺陷增多,防腐性能降低.  相似文献   

2.
通过共混法用纳米SiO2对环氧涂层进行改性,采用电化学阻抗谱(EIS)研究浸泡于3.5 mass% NaCl溶液中的涂层/金属电极体系电化学行为;建立了四种等效电路阻抗模型对EIS数据进行拟合,通过分析电化学参数的变化规律表征了体系的腐蚀行为;从Bode图选取了能直观反映涂层保护性能且误差小的高频区参数,研究了涂层防腐...  相似文献   

3.
改性环氧涂层吸水性及耐蚀性研究   总被引:9,自引:0,他引:9  
采用重量法和电化学阻抗谱法考察了两种环氧涂层的吸水性 和防腐蚀作用.结果表明水在涂层中的扩散可以分为两个过程,分别作用于提高涂层的离子 导电性和降低涂层在金属表面粘结性.涂层的吸水性对金属/涂层界面行为有重要的影响, 从而影响涂层的防腐蚀性能.以吗啉Mannich碱固化的环氧涂层在涂层/金属界面的憎水性有 所提高,具有较好的防腐蚀能力.  相似文献   

4.
为了提高纳米材料在环氧树脂中的异相分散效果,采用十二烷基苯磺酸钠对自制纳米ZrO2表面进行修饰改性。采用XRD和FTIR技术对改性纳米ZrO2进行了表征,利用SEM/EDS观察了纳米ZrO2在环氧涂层中的分散效果,使用电化学阻抗谱技术研究了改性纳米ZrO2/环氧涂层对Q235钢的防护效果。结果表明:十二烷基苯磺酸钠成功接枝到纳米ZrO2表面,提高了纳米ZrO2在环氧树脂中的分散效果。环氧涂层的附着力随着纳米ZrO2含量的升高而降低,当纳米ZrO2在环氧树脂中的含量为1%时,涂层耐渗透性能好,涂层电阻大,对Q235钢防护性能最佳。  相似文献   

5.
本文着重讨论钢质管道液态环氧内防腐(减阻)涂层成型过程中出现的一些常见缺陷,并进行分析总结,来提高内涂层最终的质量。  相似文献   

6.
《金属功能材料》2009,16(4):56-56
美国俄亥俄州的Battelle Momorial学院的新材料应用系的研究人员新近研究成功一种纳米材料涂层,用于金属表面能在金属出现腐蚀时会发出荧光。因此,这种纳米材料涂层能够在金属材料出现单凭肉眼不能发现的腐蚀时就能显示其腐蚀现象。这种功能纳米材料可以作为涂层的底层与表层的中间层来应用,当金属材料刚一出现腐蚀时就能显示其腐蚀产物。  相似文献   

7.
周劲晖  何平 《硬质合金》1995,12(2):92-95
对硬质合金CVD涂层刀片的组织缺陷进行了系统分析,发现涂层的主要缺陷为;Al2O3柱晶生长组织,Al2O3局部外延生长,刀片表面有涂层颗粒沉降物,涂层剖面上还出现孔洞、裂纹等生长缺陷。  相似文献   

8.
根据海阳AP1000施工现场CA01模块环氧涂层的缺陷情况,系统介绍和分析了CA01结构模块在施工和涂层保护过程中对涂层的要求和涂层耐候性。  相似文献   

9.
环氧涂层室外暴晒和室内加速老化试验相关性研究   总被引:7,自引:3,他引:4  
通过室外海洋大气暴晒和室内紫外线照射对环氧涂层进行了老化试验,并运用光泽、颜色、粉化率、SEM以及电化学多重动电位扫描(MCPDP)等手段测试了涂层在室外大气暴晒和室内紫外加速老化下的表面形貌和对金属保护性能的变化,初步探讨室外海洋大气暴晒和室内紫外人工老化试验的相关性.发现对于环氧涂层室内紫外人工老化降解的效果强于室外海洋大气天然老化,基于光泽测试的加速因子约为5;基于颜色和粉化率测试的加速因子都大于12.  相似文献   

10.
掺杂纳米钛导静电涂层的耐蚀性能   总被引:1,自引:0,他引:1  
采用电化学阻抗技术(EIS)研究了掺杂纳米钛导静电涂层在3.5% NaCl水溶液中的耐蚀性能.与参考涂层相比,掺杂纳米钛涂层在短时期内具有更好的防腐蚀性能,而且在腐蚀溶液中浸泡一段时间后阻抗值有明显回升现象.长时间试验后两种涂层耐蚀性能逐渐趋于相当,都有稳定而良好的防腐蚀性能.  相似文献   

11.
通过向环氧涂层中添加适量的氧化石墨烯-氟代聚苯胺(GO-PFAN)复合填料,有效提高了环氧涂层在N80钢的耐腐蚀性能,同时考察了复合填料加量对环氧涂层防腐性能的影响。实验结果表明,氧化石墨烯-氟代聚苯胺/环氧复合涂层在3.5%NaCl溶液中浸泡60天后仍具有较高的阻抗值,其中复合填料添加量为2 wt%的环氧涂层的阻抗值最高,为5.67×1010Ω·cm2,说明添加了复合填料的环氧涂层具有优异的防腐性能。  相似文献   

12.
防腐涂层起泡缺陷原因分析及控制措施   总被引:1,自引:0,他引:1  
钢铁防腐涂层的施工中经常发现因各种不同原因引起的涂层起泡现象,因此,造成了涂层缩孔、针孔、鱼眼等不同的涂层弊病。泡的存在严重影响了涂层的保护效果、外观检验。本文分析了起泡产生的不同原因和容易引起的各种涂层缺陷,对确定防腐涂层的修补方案具有指导意义。  相似文献   

13.
利用氨基硅油改性的硅藻土(Si-ASO),结合聚二甲基硅氧烷(PDMS)设计了一种有机硅环氧树脂基(EP)复合功能涂层(EP/Si-ASO/PDMS)用于金属表面的防垢和防腐。采用扫描电镜、电化学测试、摩擦测试等对涂层性能进行表征。结果表明,EP/Si-ASO/PDMS复合涂层具有独特的防垢性能,涂层表面的CaCO3沉积量与EP/Si涂层相比减少了45%。耐腐蚀试验证明EP/Si-ASO/PDMS复合涂层具有优异的耐蚀性,制备的EP/Si-ASO/PDMS复合涂层在3.5% NaCl溶液中浸泡34 d后仍然保持着较高的阻抗模量(1010 Ω/cm2左右)。摩擦实验表明EP/Si-ASO/PDMS复合涂层具有良好的耐摩擦性,经过5000转摩擦后,质量损失仅为EP/Si涂层的26.47%。  相似文献   

14.
纳米结构涂层与纳米改性材料   总被引:6,自引:0,他引:6  
简要介绍作者近年来研发的几项纳米结构涂层和纳米改性材料技术的研究与应用进展,包括热喷涂纳米结构陶瓷涂层、热喷涂纳米结构硫化物自润滑涂层、电镀和电泳沉积纳米结构涂层、纳米改性硬质合金材料、纳米改性合金铸铁材料。从而证明纳米科技的工业应用不是梦。  相似文献   

15.
有机涂层因操作便捷、成本低廉在金属防腐领域备受青睐,其中环氧树脂因其显著的化学惰性、对基材的优异附着力和优良的力学性能而被广泛应用。然而环氧涂层在固化过程中因收缩或溶剂蒸发而产生空隙和导电通道,降低了其防腐效率。解决这一问题的策略是向环氧涂层中加入纳米颜填料。本文针对当下应用于环氧防腐涂层的纳米颜填料进行了总结,详细阐述了非金属纳米填料(包括无机非金属纳米填料和有机纳米填料)和金属纳米材料,特别是新型纳米填料(MOFs材料和MXene材料)的性能及改性现状,并对其应用前景进行了展望。  相似文献   

16.
填料及液体橡胶对降低环氧厚涂层内应力的作用   总被引:8,自引:1,他引:7  
高焕方 《表面技术》2002,31(4):53-54
简要介绍了内应力产生的原因并重点分析了填料及液体橡胶对降低环氧厚涂层内应力的作用机理.  相似文献   

17.
涂层缺陷对金属基体腐蚀行为的影响及研究方法   总被引:6,自引:0,他引:6  
通过对该研究领域的回顾,分析了涂层缺陷对腐蚀性 介质在涂层中的传输行为及金属基体腐蚀行为的影响,并对其研究方法进行了评述,提出现 存的问题和可能的解决方法.  相似文献   

18.
目的 研究蒙脱土-聚吡咯(MMT-PPy)改性环氧树脂涂层的防腐性能.方法 通过氧化合成法制备PPy,采用插层法制备不同吡咯(Py)含量的MMT-PPy粉末.然后分别制备MMT-PPy/EP涂层、不同Py含量的MMT-PPy复合材料涂层和掺杂不同MMT-PPy含量的复合材料涂层.利用XRD、接触角测量仪、电化学工作站等...  相似文献   

19.
肖军  樊会涛  周惠娣 《表面技术》2014,43(2):150-155
目的研究涂料颜/填料的分散工艺与涂料的成膜过程以及涂层防热性能、环境适应性的关联。方法采用不同方法对涂料进行分散,并喷涂于钢基、钛合金基体及铝合金基体表面,对比分析涂层的物理性能、防热性能及环境适应性。结果分散良好的涂料细度约为60~70μm。实验室烧蚀试验和空中搭载试验结果验证了良好分散有助于降低内应力,增强涂层的环境适应性,延长涂层的服役寿命,提高涂层的热防护性能。结论经过充分分散得到的涂层,其外观、防热性能及寿命均达到最优。  相似文献   

20.
填料与固化工艺对环氧胶粘涂层硬度的影响   总被引:2,自引:1,他引:1  
研究了Zn和Ti粉等填料对316L基体上AR-5环氧树脂胶粘涂层硬度的影响.实验结果表明:在所采取的实验条件下,于市售AR-5耐磨胶中加入填料Ti粉5.7%、Zn粉46.2%左右(占胶质量分数)时,所得胶粘涂层有较高的硬度,固化工艺参数对环氧胶粘涂层的硬度有显著的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号