首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 验证复合钢板的极地低温环境适应性。方法 采用爆炸复合的方法制备低温复合钢板。通过全浸腐蚀试验、间浸腐蚀试验、腐蚀磨损试验、系列温度冲击试验、系列温度动态撕裂试验和全厚度止裂试验,分别评价复合钢板的耐蚀性、耐磨性能、低温断裂性能及止裂性能,并对复合钢板的低温断裂性能及极地低温环境适应性进行分析。结果 全浸腐蚀条件下,复合钢板基层材料的腐蚀速率是复层材料的105倍;间浸腐蚀条件下,复合钢板基层材料的腐蚀速率是复层材料的350倍;全浸和间浸状态下,复层钢板的腐蚀速率均远小于基层钢板,复层材料的耐蚀性远远好于基层材料。模拟海水条件下,复合钢板复层317L不锈钢的磨损量为0.003,基层FH40钢的磨损量为0.75,基层材料的磨损量是复层的250倍,复层材料的耐磨性远远好于基层材料。分析了20组大厚度规格低温钢的韧脆转变特征温度与止裂温度的相关性关系,指出了现有规范与标准以冲击功作为低温钢断裂性能技术指标的局限性,建立了止裂温度与动态撕裂韧脆转变特征温度相关性方程,给出了低温钢极地环境低温服役下的韧脆转变特征温度建议值,确定了复合钢板极地低温环境服役的最低温度。结论 模拟海水环境下,复合钢...  相似文献   

2.
邹洋  刘希武  李辉 《腐蚀与防护》2022,(6):62-66+102
针对某厂精对苯二甲酸(PTA)生产装置氧化单元设备的腐蚀问题,在高温高压反应釜中进行了浸泡腐蚀试验,研究了温度对有氧和无氧条件下316L、317L和904L不锈钢在含Br-醋酸溶液中耐蚀性的影响,采用电化学测试、体视显微镜和扫描电镜等方法,分析了3种材料的电化学特征及表面腐蚀形貌。结果表明:随着温度的升高,3种材料的腐蚀速率均逐渐增大,且其在有氧条件下的腐蚀速率比无氧条件下的大,3种材料的耐蚀性按从高到低的顺序依次为904L不锈钢、317L不锈钢和316L不锈钢;当温度为60℃时,3种材料的腐蚀程度均较轻,其表面均保持金属光泽,无明显腐蚀痕迹;随着温度的继续升高,材料表面的腐蚀程度加剧;当温度低于60℃时,3种材料均发生了点蚀,其点蚀电位按从低到高的顺序依次为316L不锈钢、317L不锈钢和904L不锈钢。  相似文献   

3.
《机械制造文摘》2006,(3):35-36
T9l/P9l钢的焊接工艺;石化装置用16MnR(HIC)钢的焊接;圆形零件固定于钢板的焊装[德];09MnNiDR低温钢机壳的焊接;双相不锈钢复合钢板的焊接;超双相不锈钢焊接接头耐蚀性新的评估方法[英];[编者按]  相似文献   

4.
不锈钢和镍基合金在高温高压醋酸溶液中的腐蚀行为   总被引:1,自引:0,他引:1  
采用特制高压釜设备,研究304L不锈钢、316L不锈钢、317L不锈钢和镍基合金(Incoloy 800)在高温高压醋酸溶液中的腐蚀,初步探讨了不锈钢和镍基合金在醋酸溶液中的腐蚀机理及Ni和Mo元素对提高不锈钢耐蚀性能的影响.结果表明,温度对不锈钢和镍基合金耐蚀性有显著影响,随着温度的升高,腐蚀速率逐渐增大,当温度升高到一定值,不锈钢的耐蚀性会急剧下降.在低温醋酸溶液中,Ni对于提高不锈钢耐蚀性是有益的;在高温醋酸溶液中,Ni对于提高不锈钢耐蚀性没有显著影响.在低温醋酸溶液中,Mo对于提高不锈钢耐蚀性没有显著影响;在高温醋酸溶液中,Mo对于提高不锈钢耐蚀性是有益的.  相似文献   

5.
郭超  李明  沈全锋  田彪  高山 《表面技术》2016,45(7):51-55
目的研究撒哈拉地区某输水项目不锈钢设施点蚀的原因及解决方案。方法通过对输水项目管线、过滤器、膨胀节、换热器等不锈钢设施进行腐蚀形貌观察,在现场取原水水样、腐蚀样品和腐蚀产物进行实验室水质分析、扫描电镜及能谱分析,并对腐蚀情况进行综合评价。通过动电位扫描Tafel曲线和Rp拟合分析方法,对DIN 1.4301不锈钢在不同温度原水中的电化学性能进行测试和分析。结果该不锈钢主要腐蚀形态为点蚀,位置集中在管线底部焊缝,高温比低温环境腐蚀点更多。原水矿化度达1947 mg/L,水中氯离子质量浓度为600 mg/L,室温条件下RI值为7.7,有较强的腐蚀性。该不锈钢抗点蚀当量PREN较低。通过电化学测试发现,管线用不锈钢材料DIN 1.4301在原水中20℃条件下有较好的耐蚀性,当温度高于40℃时其耐蚀性急剧下降,因此该地区的强辐射高温环境和停输过程进一步加剧了原水中各类不锈钢的腐蚀。结论发生点蚀主要原因是水质差,所选用材质耐点蚀性能差,另外停输和环境因素引起的高温进一步加剧了点蚀的发生。可通过水源净化、更换耐点蚀材质、涂层内防护、减少停输、避免高温辐射等方案,减少点蚀的发生。  相似文献   

6.
通过盐雾试验、海水浸泡试验、实际海域挂片试验及应力腐蚀试验结合表面形貌观察和显微组织分析,研究了新型无磁高强度A10不锈钢及其对比材料917钢的耐海水腐蚀性能。结果表明:A10不锈钢在海水中全面腐蚀速率低,腐蚀试样表面光亮、无锈、无点腐蚀、无裂纹;而在相同条件下,917钢锈蚀严重。A10不锈钢在海水中的耐蚀性远优于917钢的,且具有优良的抗应力腐蚀开裂性能。  相似文献   

7.
不同温度下溶解氧对304不锈钢在海水中腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用循环极化和电化学阻抗方法,研究了不同温度下溶解氧对304不锈钢在海水中腐蚀电化学性能的影响。循环极化结果表明,在不同温度条件下,随着溶解氧浓度的增加,不锈钢自腐蚀电位均略微正移,点蚀电位在4℃低温环境下正移,15℃条件下负移。在4℃、7.5mg/L溶解氧条件下以及15℃时3.0mg/L、7.5mg/L溶解氧条件下,...  相似文献   

8.
采用实验室加速腐蚀实验对比研究316L、304不锈钢和20#锅炉钢(记为20g)在模拟黄磷尾气腐蚀环境条件下的腐蚀性能。结果表明,316L不锈钢的耐蚀性要优于304不锈钢和20g,在250℃~300℃时304和316L不锈钢均发生酸蒸汽的露点腐蚀,且 304不锈钢出现较为严重的孔蚀现象。  相似文献   

9.
321不锈钢在淡化海水中的耐腐蚀性能   总被引:1,自引:0,他引:1  
采用电化学测试和慢应变速率拉伸(SSRT)方法,结合扫描电镜(SEM)评价321不锈钢在淡化海水中的耐蚀性.循环伏安实验表明,随着温度的升高,点蚀击破电位负移,耐点蚀性能下降;321不锈钢在淡化海水中的临界点蚀温度(CPT)为30.5℃.SSRT实验结果表明,321不锈钢在淡化海水中具有一定的应力腐蚀开裂(SCC)敏感性,随着温度的升高,应力腐蚀敏感性增大.在35℃和50℃,321不锈钢在淡化海水中的断裂为韧性断裂;而在70℃,断口微观形貌呈现韧窝+少量准解理形貌,SCC敏感性增强.  相似文献   

10.
不锈钢和PEEK聚合物是海水液压元件关键摩擦副常用的配对材料,不锈钢材质对不锈钢/PEEK聚合物对偶副的摩擦学性能具有重要影响。在海水环境中对AISI 316L、AISI 630以及S32750三种不锈钢进行摩擦磨损试验,对比分析了上述3种不锈钢与同种PEEK聚合物对磨时的摩擦因数和磨损率,观察试样表面磨损形貌并对磨损轮廓进行3D测量,探讨了海水环境中3种不锈钢与PEEK聚合物对磨时的摩擦磨损机制。结果表明:在海水环境中3种不锈钢的平均摩擦因数相差不大;与AISI 316L相比,S32750与AISI 630的耐磨损性较好,AISI 630的磨损率受载荷影响较小;S32750与AISI 316L的硬度与其耐磨性呈正相关性,而AISI 630中过高的碳含量会削弱其耐蚀性,进而影响它在海水中的摩擦磨损性能。文中研究为海水液压元件关键摩擦副中钢质材料的选择提供参考。  相似文献   

11.
研究了254SMo、904L和317L超级奥氏体不锈钢在650、700和750℃下30%Na2SO4+30%K2SO4+20%NaCl+20%KCl混合熔盐中的热腐蚀行为。通过腐蚀动力学以及腐蚀产物成分和形貌分析,探究了3种不锈钢在熔融混合盐中的高温腐蚀机理。结果表明,3种不锈钢在不同温度下均表现为失重,耐蚀性顺序为254SMo>904L>317L不锈钢;熔融的氯盐加速腐蚀,主要遵循“电化学腐蚀+氯活性腐蚀”腐蚀机制,硫酸盐通过“碱性助溶”机制溶解和破坏腐蚀层,从而造成严重的内部和晶间腐蚀;在两种腐蚀机制中,以氯腐蚀为主,硫腐蚀为辅;提高Mo和Ni含量可以在一定程度上改善奥氏体不锈钢的耐高温腐蚀性。  相似文献   

12.
采用高温高压釜研究了20钢、1Cr5Mo钢、304不锈钢和316L不锈钢在不同温度下在高硫高酸原油中的腐蚀行为。利用扫描电镜和能谱技术测试了腐蚀产物膜的微观形貌与产物膜的化学组成。结果表明:4种钢材在高温原油中的耐蚀性优劣为:316L不锈钢304不锈钢1Cr5Mo钢20钢;4种钢材的腐蚀速率总体上随温度的升高而增大,当温度大于200℃时,20钢和1Cr5Mo钢的腐蚀速率增加较快,而不锈钢在200℃以上时腐蚀速率随温度变化并不明显;钢材在200℃及以下的原油中主要为轻微的环烷酸腐蚀,当温度达到280℃附近时,硫开始参与反应,形成了环烷酸与活性硫协同腐蚀的环境,腐蚀速率较大。  相似文献   

13.
模拟脱H2S汽提塔塔顶系统现场工况,采用浸泡腐蚀挂片、恒电位阳极极化法、U型弯曲应力腐蚀等方法对20号钢、304L、321、316L及2205不锈钢在湿硫化氢环境中的均匀腐蚀、点蚀和应力腐蚀开裂敏感性进行了研究,并利用体视显微镜和SEM对金属试样的微观腐蚀形貌进行了观察。结果表明:20号钢耐蚀性较差,易在低温下发生氢鼓泡,奥氏体不锈钢304L、321、316L及双相不锈钢2205的腐蚀速率较小,耐蚀性好,其中304L和321不锈钢耐点蚀性能稍差,表面出现了轻微点蚀造成的蜂窝状的局部腐蚀;H2S的存在明显提高了奥氏体不锈钢在Cl-环境中的点蚀敏感性;304L、321及316L不锈钢焊接试样均具有较好的耐应力腐蚀开裂性能。  相似文献   

14.
通过实验室模拟垃圾焚烧炉中水冷壁环境,研究了新型奥氏体不锈钢254SMo、904L和317L在750、850和950℃下NaCl盐中的热腐蚀行为,获得了腐蚀动力学曲线;利用SEM/EDS和XRD对3种材料腐蚀产物的形貌和组成进行了观察和分析,探讨了热腐蚀机理.结果 表明:3种不锈钢在热腐蚀过程中都表现为失重,并且随着温...  相似文献   

15.
离子渗氮温度对不锈钢组织及性能的影响   总被引:1,自引:1,他引:1  
对1Cr18NigTi、1Cr13、0Cr18Ni9不锈钢进行了不同温度的离子渗氮.利用金相显微镜及扫描电镜观察了渗氮层显微组织形貌;利用能谱仪测试了渗层中元素的含量及分布情况;利用HVS-1000型数显显微硬度计测定了渗层不同深度处的硬度变化;采用改制的摩擦磨损试验机测试了渗氮层的摩擦磨损特性;利用盐雾腐蚀试验箱测试了渗氮层的耐腐蚀性.结果表明,随渗氮温度增加,3种钢的渗层表层组织中氮化物量减少,高氮浓度的ε相转变为γ'相,440 ℃渗氮形成了氮在基体中的过饱和固溶相;1Cr13不锈钢比1Cr18Ni9Ti及0Cr18Ni9不锈钢的渗层厚;渗层表面硬度降低,但从表面向心部的峰值硬度增加;在一定范围内渗层耐磨性降低,但比未渗氮试样均提高4倍左右;渗层的耐盐雾腐蚀性降低,但440℃的低温渗层的耐蚀性与未渗氮试样差不多.  相似文献   

16.
采用腐蚀浸泡失重方法结合动电位极化曲线和电化学阻抗谱,研究了不同温度下2205双相不锈钢在不同浓度H2SO4溶液中的耐蚀性,并与传统的20R钢和316L不锈钢作对比。结果表明,三种材质的耐蚀能力由强到弱排序为:2205316L20R;硫酸浓度和温度对腐蚀速率的影响由强到弱排序都为:20R316L2205。在T≤40℃,2205双相不锈钢的腐蚀深度为0mm/a,耐蚀性等级为1级,评定为完全耐蚀;当温度增加至60℃且硫酸浓度为30%时,其腐蚀速率显著增加,腐蚀深度为27.026mm/a,耐蚀性等级为10级,评定为不耐蚀。高铬含量可以降低不锈钢材料的钝化电位,另一方面可以增强不锈钢表面钝化膜的修复能力,可能是2205双相不锈钢比316L和20R更耐蚀的本质原因。  相似文献   

17.
徐立新 《焊接》2007,(11):58-60
当前国内生产的深冷低温液体储运容器的设计温度通常为-183~-196℃,主体母材为18—8型奥氏体不锈钢。通常认为,奥氏体不锈钢及其焊缝金属在深冷低温下不仅具有较高的强度,而且具有极优良的低温塑性和韧性,因而成为深冷低温环境下应用的主要结构材料之一。但是,奥氏体是亚稳定的(例如300系列钢),其优良的低温特性受到本身亚稳定性的不良影响。  相似文献   

18.
双相不锈钢2205与低碳合金调质高强钢15MnNiCrMoV复合板焊接接头,35℃下,在质量分数为10%的HCl和H2SO4腐蚀溶液中,对其腐蚀产物进行了分析,结果表明,复合板焊接接头在HCl溶液中的耐蚀性较差,且热影响区的腐蚀程度均比焊缝处的严重;在H2SO4溶液中,焊接接头15MnNiCrMoV侧的腐蚀比在相同条件下的HCl中严重,尤其是热影响区对H2SO4的耐蚀性较差,而焊接接头双相不锈钢2205侧在H2SO4溶液中未发生腐蚀。其原因主要是在双相不锈钢表面形成了钝化型的Cr2O3、FeO、Cr-O等氧化物膜层。  相似文献   

19.
H2S和Cl-对于促进316L不锈钢腐蚀具有协同作用。本工作利用线性极化、电化学阻抗(EIS)等电化学测试研究了316L不锈钢在高浓度H2S-Cl-环境中的腐蚀行为。在60℃、含1.5×105 mg/L Cl-的饱和H2S溶液中,316L不锈钢经过5至30天的腐蚀浸泡后,线性极化和EIS结果表明,随腐蚀时间增长,参与反应的电荷转移加快,钝化膜溶解加速,耐蚀性降低。  相似文献   

20.
通过对马氏体沉淀硬化不锈钢FV520B相同热处理条件下的母材及焊接接头满足使用要求后,在35℃下,质量分数为10%的HCl腐蚀介质及相同质量分数下的H2SO4腐蚀介质中的均匀浸泡腐蚀来测定FV520B的耐蚀性.结果表明,在35℃下的不同腐蚀环境中,母材及焊接接头在质量分数为10%的HCl中的腐蚀均较为严重,氯离子对不锈钢的钝化膜有较为严重的破坏性,可在材料的表面形成较深的点蚀坑.在质量分数为10%H2SO4中的腐蚀相对较弱,腐蚀产物也各不相同,且在不同的腐蚀环境中,焊缝处的腐蚀程度比热影响区处的较轻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号