首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

2.
将稀土元素Nd添加到Mg-2Zn-3Sn合金中,采用金属型铸造制备了Mg-2Zn-3Sn-xNd(x=0, 0.5, 1, 2,质量分数,%)合金,采用光学显微镜(OM)、扫描电镜(SEM)及X射线衍射(XRD)等分析了铸态Mg-2Zn-3Sn-xNd合金的微观组织,应用电化学测试和Hank’s溶液静态浸泡测试研究了其耐腐蚀性能。结果表明,铸态Mg-2Zn-3Sn-xNd合金由α-Mg相、MgSnNd相、Mg2Sn相和少量的MgZn相组成。与Mg-2Zn-3Sn合金相比,Mg-2Zn-3Sn-xNd合金的晶粒得到明显细化。少量Nd(0.5%、1%)可提高Mg-2Zn-3Sn合金的耐腐蚀性,但当Nd的添加量较高时(2%),电偶腐蚀加剧,合金的耐腐蚀性能降低。Mg-2Zn-3Sn-0.5Nd合金的耐腐蚀性能最佳,说明适量Nd可改善Mg-2Zn-3Sn合金的耐腐蚀性。  相似文献   

3.
制备Mg-5Bi-xCu(x=0,0.2,0.5,1.0,质量分数,%)合金铸锭,研究其铸态组织和沉淀硬化行为。结果表明:铸态Mg-Bi-Cu合金主要由α-Mg枝晶、Mg3Bi2相、MgCu2相和Mg2Cu相组成,Mg3Bi2相和α-Mg基体的取向关系为■,Mg2Cu相和Mg3Bi2相之间的取向关系为■。铸态合金硬度随Cu添加量提高先增大后减小,添加0.5%Cu时硬度最高,为(50.9±1.2)HV。固溶态Mg-5Bi-0.5Cu合金硬度为(49.8±0.9)HV。在175℃时效64 h后,硬度达到峰值(56.1±0.7)HV。时效硬度的提高主要是由于高密度Mg3Bi2相的沉淀强化作用,且由于Cu元素的添加,长杆状Mg3Bi2沉淀相转变为颗粒状和短棒状Mg3Bi2  相似文献   

4.
为改善医用镁合金微观组织特征与降解行为,采用挤压形变工艺改变医用镁合金的晶粒尺寸特征及析出相/金属间化合物尺寸、分布规律,探究了挤压态医用Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金微观结构特征及降解行为。结果表明:不同的热挤压变形并没有改变Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金中第二相的类型,但改变了第二相的分布和形貌。Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金的成分主为α-Mg和W-Mg3Y2Zn3。电化学测试结果表明,铸态、挤压370℃和挤压390℃合金腐蚀电流密度分别为2.498、3.656、1.012μA·cm-2。这是由于铸态组织中析出相/金属间化合物呈带状分布在基体中,可作为微阴极形成电偶腐蚀位点,加速合金腐蚀速率。合金在370℃挤压时,由于实际温度较低,部分粗化相未能充分溶解到α-Mg基体中,随着析出相数量增加及分布混乱无序,微阴极面积比例增大,进而导致腐蚀速率加剧。而390℃挤压态镁合金的挤压速度快、耗散行为慢,且铸锭与挤压机间摩擦强烈,已发生充分动态再结晶行为...  相似文献   

5.
采用X射线衍射仪、光学显微镜、扫描电镜和透射电镜等研究了铸态Mg-2.0Zn-0.4Mn-xAl (x=0, 2.0, 3.0, 4.0, 5.0, 6.0 mass%)合金的物相和显微组织,采用拉伸实验测试了合金的力学性能,采用静态质量损失法和电化学测试实验研究了合金的耐腐蚀性能。结果表明:含Al合金的组织主要由α-Mg基体及不同形貌的Mg2(Zn, Al)11和MgZn2第二相组成。随着Al含量的增加,合金的晶粒尺寸逐渐减小,其力学性能和耐腐蚀性能先升高后降低。当Al含量为4.0 mass%时,合金具有较好的力学性能及耐腐蚀性能,其极限抗拉强度、屈服强度及伸长率分别为(158.4±4.2) MPa、(119.2±5.8) MPa及(15.6±0.5)%,在3.5%NaCl溶液中浸泡72 h后,其平均静态腐蚀速率和析氢腐蚀速率分别为(0.958±0.057)和(0.933±0.051) mm/y。  相似文献   

6.
研究固溶态和挤压态Mg-xLi-3Al-2Zn-0.5Y(x=4,8,12,质量分数,%)合金的显微组织和腐蚀行为。结果表明,当锂含量从4%增加到12%,合金基体由α-Mg单相转变为α-Mg+β-Li双相,再转变为β-Li单相。Mg-4Li-3Al-2Zn-0.5Y和Mg-12Li-3Al-2Zn-0.5Y合金具有晶间腐蚀和点蚀的混合腐蚀特征,前者与沿晶界析出的AlLi相有关,后者与第二相与基体之间的高电位差有关。挤压态合金的耐蚀性优于固溶态合金。挤压态Mg-8Li-3Al-2Zn-0.5Y合金具有最低腐蚀速率(PW=(0.63±0.26)mm/a),主要归因于该合金的第二相分布更均匀、通过牺牲β-Li相形成的保护性α-Mg相和相对完整的更均匀分布的氧化膜。  相似文献   

7.
通过失重法、析氢实验、pH值测定和动电位电化学测试等方法.研究了挤压态Mg-0.54Ca和Mg-1.33Li-0.6Ca合金在模拟体液中的腐蚀降解行为,并利用OM和SEM对合金显微组织及腐蚀形貌进行了观察,采用XRD对基体及腐蚀产物的相结构进行分析.结果表明,Mg-1.33Li-0.6Ca合金的组织由α-Mg基体和Mg_2Ca及CaLi_2第二相组成,而Mg-0.54Ca合金的组织由α-Mg基体和第二相Mg_2Ca组成;Mg-1.33Li-0.6Ca合金在Hank's溶液中浸泡初期的耐蚀性能略低于Mg-0.54Ca合金,随着浸泡时间的延长,其耐蚀性能明显优于Mg-0.54Ca合金,主要原因是Li提高了Mg-1.33Li-0.6Ca合金腐蚀产物的致密性;Mg-1.33Li-0.6Ca合金的腐蚀产物为LiH.Mg(OH)_2,MgCO_3,CaCO_3,CaMgCO_3和CaMgPO_4,而Mg-0.54Ca合金腐蚀产物为MgCO_3,CaCO_3和CaMgPO_4.Mg-0.54Ca和Mg-1.33Li-0.6Ca合金在模拟体液中的腐蚀类型都为点蚀和丝状腐蚀.  相似文献   

8.
利用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、电化学试验与浸泡试验等研究了挤压处理与添加合金元素Ca对Mg-7Sn合金显微组织、耐蚀性及力学性能的影响。结果表明:添加Ca元素可以明显细化铸态Mg-7Sn合金的晶粒,并在晶粒内部与晶界形成了棒状的CaMgSn相,同时,腐蚀过程中,添加Ca会使合金表面形成含Ca的化合物,阻止或延缓腐蚀的进行,提高合金的耐蚀性。挤压处理使得合金的平均晶粒尺寸由55.2μm减小到3.3μm,粗大棒状的CaMgSn相被破碎成细小的块状。挤压处理后Mg-7Sn-1Ca合金的耐蚀性出现轻微下降,但保证了较高的显微硬度。挤压态Mg-7Sn-1Ca合金兼具力学性能和耐蚀性。  相似文献   

9.
采用光学显微镜、扫描电镜、能谱分析、X射线衍射和拉伸试验等方法,研究了Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr镁合金在铸态、挤压态和时效态的室温组织和力学性能。结果表明,Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金平均晶粒尺寸小于Mg-0.6Zr合金的晶粒尺寸,由300μm分别细化为100μm和80μm左右,晶界上分别有少量的颗粒状Mg5Gd相和不规则形状的Mg41Nd5、Mg12Nd相。挤压态Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金出现了变形晶粒和动态再结晶晶粒构成的双峰组织,时效后双峰组织更加明显。时效态Mg-1Nd-0.6Zr合金的力学性能最好,抗拉强度为201.71 Mpa,比挤压态高3.6%,比铸态高23%,比时效态Mg-1Gd-0.6Zr合金高2%。时效态Mg-1Nd-0.6Zr合金的伸长率为29.2%,比挤压态高4.3%,比铸态高46%,比时效态Mg-1Gd-0.6Zr合金高15.4%。  相似文献   

10.
利用光学显微镜、X射线衍射仪和扫描电镜等方法研究了固溶时效处理前后Mg-4Sm-3Gd-0.5Zr合金(质量分数,%)的显微组织、物相组成和腐蚀形貌,并在质量分数为3.5%的NaCl溶液中进行了静态失重和电化学测试。结果表明,铸态Mg-4Sm-3Gd-0.5Zr合金由α-Mg基体和沿晶界分布的粗大网状共晶相Mg41Sm5和Mg5Gd组成,固溶时效处理并没有改变共晶相的种类,但网状共晶组织消失,并且晶内有大量细小弥散的第二相析出,晶界更加清晰。试验合金采用525 ℃×8 h固溶+225 ℃×8 h时效处理后,腐蚀速率从0.185 mg·cm-2·h-1降低至到0.116 mg·cm-2·h-1,自腐蚀电流密度从1.599×10-4A·cm-2降低到0.924×10-4 A·cm-2,耐蚀性能明显提高。  相似文献   

11.
研究挤压温度对铸态Mg-2.0Zn-0.5Zr-3.0Gd生物镁合金组织、力学性能及耐腐蚀性能的影响。结果表明:挤压温度在330~350℃时,动态再结晶的体积分数随挤压温度的升高而增加;在350~370℃时,动态再结晶的体积分数随温度的升高而降低。挤压态合金的析出相主要由纳米级的棒状(Mg, Zn)_3Gd相和新析出的颗粒状Mg_2Zn_(11)相组成。合金的力学性能与动态再结晶晶粒的体积分数成正比关系。挤压温度为350℃时,合金的抗拉强度、屈服强度及伸长率分别为(247±3) MPa、(214±3) MPa和(26.7±1.1)%。随着挤压温度的升高,合金的腐蚀速率先减小后增大,挤压温度为350℃时,合金的静态腐蚀速率及析氢腐蚀速率分别为0.614 mm/a和0.598 mm/a。  相似文献   

12.
为解决因残余应力、组织不均匀性、成分偏析所造成的铸态Mg-3Zn-0.8Zr-1Y(mass%)合金性能不佳的问题,对其进行了固溶和时效处理,研究了热处理工艺对其显微组织、力学性能及耐腐蚀性能的影响。结果表明:Mg-3Zn-0.8Zr-1Y合金的最优热处理工艺是480℃均匀化退火12 h后520℃固溶处理12 h,最后在170℃时效24 h。均匀化退火处理缓解了铸态合金中的偏析现象,固溶处理使铸态合金中的W(Mg3Y2Zn3)相基本融入α-Mg基体中形成过饱和固溶体,时效后组织中析出细小且弥散分布的纳米级短杆状Mg2Zn3和颗粒状Mg4Zn7第二相。与铸态合金相比,经最优工艺处理后合金的硬度、极限抗拉强度、屈服强度和伸长率分别提升到83.4 HV、204 MPa、139 MPa和12.5%,自腐蚀电位提高到-1.793 V(vs.SCE)、腐蚀电流密度降低到59.64μA/cm2,腐蚀速率降低到1.36 mm/y...  相似文献   

13.
通过光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和万能材料试验机等研究了固溶处理对Mg-2.0Zn-0.4Mn-xAl合金微观组织和性能的影响,借助质量损失实验和电化学实验研究了合金在3.5%NaCl溶液中的耐腐蚀性能。结果表明:合金中第二相的数量及尺寸随着Al含量的增加而增加,第二相组成由纳米级棒状MgZn2相和椭圆状Mg2(Zn, Al)11相(0~4 mass%Al)向Mg17Al12相(6 mass%Al)转变。当Al含量为4.0 mass%时,合金具有较好的综合力学性能和耐蚀性能,其极限抗拉强度、屈服强度及伸长率分别为(180.1±3.1) MPa、(124.7±2.8) MPa和(16.7±1.5)%,在3.5%NaCl溶液中浸泡72 h后,合金的静态腐蚀速率和析氢腐蚀速率分别为(0.822±0.056) mm/y和(0.790±0.045) mm/y。  相似文献   

14.
为了研究Al2Ca相和Mg2Ca相对Mg-Al-Ca-Mn合金腐蚀行为的影响,采用金相显微镜、扫描电子显微镜、浸泡和电化学测试对仅含Al2Ca相(2Ca)和仅含Mg2Ca相(4Ca)的铸态及ECAP态合金进行研究。在腐蚀初期,两种铸态合金的腐蚀速度比ECAP合金的慢。随着腐蚀时间的延长,ECAP合金的腐蚀程度变得比铸态合金轻微,这主要归因于ECAP合金中第二相的有效细化及分散。此外,2Ca合金的腐蚀程度始终小于4Ca合金,表明Al2Ca相比Mg2Ca相更有利于提高Mg-Al-Ca-Mn合金的耐腐蚀性能。最后,根据合金腐蚀表面的形貌观察和电化学测试结果,对由Al2Ca相和Mg2Ca相的分布和形貌引起合金的不同腐蚀机理进行讨论。  相似文献   

15.
本文通过 XRD、OM、SEM、TEM 和万能拉伸试验机系统地研究了铸态与挤压态 Mg100-3xY2xZnx(x=0.5,1,2;at%)合金的显微组织与力学性能。结果发现,铸态与挤压态合金均由 α-Mg 基体和 LPSO 相组成,且同时增加 Y 和 Zn 元素不仅可以促进铸态合金中 18R-LPSO 相的形成,还能够有效促进挤压态合金中 14H-LPSO相的动态析出。其次,挤压态 Mg100-3xY2xZnx合金基体均由再结晶与未再结晶双峰组织组成,且 18R 与 14H-LPSO相沿挤压方向呈现条带状分布。与此同时,18R-LPSO 相体积分数的增加严重阻碍了动态再结晶的形成与长大。此外,随着 Y 和 Zn 元素的同时增加,铸态与挤压态合金的强度不断降低而塑性逐渐增加,最后使得挤压态 Mg98.5Y1Zn0.5合金表现出较高的塑性(伸长率达 35.1 %),而 Mg94  相似文献   

16.
以Mg-Al-Ca-Mn合金体系为对象,研究了Ca、Al质量比对铸态合金微观组织和力学性能的影响。结果表明,当Ca、Al质量比为0.4时,铸态Mg-5Al-2Ca-0.4Mn合金中的第二相为(Mg, Al)2Ca相;当Ca、Al质量比为0.75时,铸态Mg-4Al-3Ca-0.4Mn合金中的第二相为(Mg, Al)2Ca相和Mg2Ca相;当Ca、Al质量比为1.3时,铸态Mg-3Al-4Ca-0.4Mn合金中的第二相为Mg2Ca相。随着Ca、Al质量比的增加,合金中的第二相由(Mg, Al)2Ca相向Mg2Ca相转变,且第二相的层间距逐渐减小,体积分数逐渐增加。此外,铸态Mg-Al-Ca-Mn合金的屈服强度随着Ca、Al质量比的增加从82 MPa增加到123 MPa,而伸长率从5.0%降低到1.1%。  相似文献   

17.
研究挤压态和时效态Mg-6Al-3Sn-2Zn(ATZ632)合金的显微组织和力学性能。挤压态ATZ632合金表现出优异的力学性能,其屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)分别为216.4 MPa、344.3 MPa和18.4%。经时效处理后,Mg17Al12析出相体积分数增加且出现Mg4Zn7相,Mg17Al12相平行于基面,Mg4Zn7垂直于α-Mg的(0001)面析出,从而使时效态ATZ632合金的YS和UTS分别增加到252.5和416.2 MPa;但EL下降至10.1%。经过150℃较低温度时效处理后,合金中出现静态再结晶晶粒,且静态再结晶晶粒的c轴垂直于挤压方向,其取向呈高度一致性。  相似文献   

18.
研发一种新型低合金化Mg-Bi-Y-Zn合金系,该合金系在673 K的挤压温度下成功成型。通过扫描电子显微镜(SEM)、电子背散射衍射(EBSD)、电化学试验和拉伸试验研究挤压态合金的腐蚀行为和拉伸性能。挤压后,合金表现出几乎完全的动态再结晶组织和典型的挤压织构,在晶粒内可以观察到一些亚微米级析出相。在SBF溶液中,合金的腐蚀模式由最初的点蚀为主转变为中间过程的丝状腐蚀为主;最后经长时间浸泡后,腐蚀模式转变为丝状腐蚀和局部晶粒脱落。挤压态Mg-0.5Bi-0.5Y-0.2Zn合金的屈服强度为237 MPa,极限抗拉强度为304 MPa,伸长率为31%,平均腐蚀速率为0.14 mm/a。由此可见,该合金表现出良好的拉伸性能和耐腐蚀性能匹配度,这主要归因于其均匀的晶粒结构和亚微米级析出相。因此本文所研发的Mg-0.5Bi-0.5Y-0.2Zn合金具有在生物医药领域的广阔应用前景。  相似文献   

19.
对铸态Mg-5Li-5Al-0.6Y合金进行了热挤压,采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD)研究了挤压对铸态合金物相和微观组织的影响。通过对挤压前后的合金进行室温拉伸试验和断口形貌分析,研究了挤压对合金力学性能的影响。通过析氢、质量减少、动电位极化曲线和电化学阻抗分析了挤压对合金腐蚀行为的影响。结果表明,挤压细化了Mg-5Li-5Al-0.6Y合金的晶粒,第二相沿挤压方向破碎成更细小弥散的颗粒,使合金的室温抗拉强度和伸长率分别提高至243.33 MPa和7.31%,合金的腐蚀速率(由质量减少计算得到)从17.60 mm·y-1降低至8.41 mm·y-1,提高了合金的耐腐蚀性能。  相似文献   

20.
研究定向凝固Mg-0.8Ca(质量分数,%)合金的力学性能以及在Hank’s溶液中的降解性能,并与普通铸造Mg-0.8Ca合金的性能进行比较。利用OM、SEM、TEM和EBSD对定向凝固合金的显微组织进行研究。结果表明,定向凝固合金具有柱状晶组织,且合金的柱状晶粒沿<1120>方向择优生长。与普通的铸造合金相比,定向凝固Mg-0.8Ca合金的强度和塑性均显著提高。同时,定向凝固Mg-0.8Ca合金在Hank’s溶液中的抗腐蚀能力也得到极大提升。合金在Hank’s溶液中主要发生微电偶腐蚀,合金的腐蚀产物包括Mg(OH)2、(Ca,Mg)3(PO4)2和羟基磷灰石。定向凝固合金性能的提高主要与柱状晶组织特征及共晶的再分布有关。具有柱状树枝晶组织的定向凝固Mg-0.8Ca合金有望用作可降解生物医用材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号