首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决赵庄煤业松软煤层瓦斯抽采率低的难题,以水力割缝技术为试验研究基础,在二盘区北回风巷进行了抽放效果对比考察,对不同穿层割缝钻孔布置方式及参数下瓦斯抽采浓度、抽采量等数据进行分析,摸索出适合赵庄煤业的以水力割缝技术增透的技术参数.试验表明,水力割缝钻孔与普通钻孔相比,瓦斯抽采浓度提高了1.49倍,抽采流量增加了3.0...  相似文献   

2.
3.
王向阳  马小辉  李文福  吴学明  唐洪  何伟 《陕西煤炭》2021,40(z1):110-113,124
彬长矿区煤层透气性系数普遍较低,采前瓦斯抽采困难.为了增加煤层的透气性,提高煤层瓦斯预抽率,解决瓦斯灾害治理难题,孟村煤矿引进了超高压水力割缝增透技术,在401102工作面进行了高压水力割缝增透实验.结果表明,孟村煤矿高压水力割缝间距确定为10 m,水力割缝半径为0.8 m,水力割缝宽度平均为6 cm,单刀最佳割缝时长...  相似文献   

4.
研究探索了水力割缝使钻孔周围煤体中的瓦斯由单向的径向流动变为径向和轴向双向流动,通过对扰动煤体的割缝宽度、平均单孔瓦斯抽采纯量、抽采半径的考察,分析了水力割缝技术和钻孔抽采技术的数据,得出了平均单孔抽采效果提高约3倍的结论。  相似文献   

5.
冯磊 《中州煤炭》2019,(11):54-57,61
为提高张集矿1煤层瓦斯抽采效果,解决低透气性厚煤层瓦斯抽采率低、瓦斯涌出量大的难题,矿井采用超高压水力割缝卸压增透技术在1415A底抽巷进行了试验应用。通过对割缝钻孔和未割缝钻孔的等效直径、钻孔瓦斯流量、瓦斯抽采量、瓦斯含量下降率等分析表明,采用超高压水力割缝术后,钻孔内煤体的暴露面积大大增加,为瓦斯释放提供了有利空间,同时使煤体充分卸压,改善煤层透气性,大幅度提高瓦斯抽采率,减少了抽采达标时间,解决了厚煤层采掘工作面瓦斯治理的难题。研究为矿区类似条件厚煤层的瓦斯高效治理提供了技术指导。  相似文献   

6.
水力割缝技术在提高瓦斯抽采效果中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
 为了解决我国矿井在低透气性煤层瓦斯抽采治理中遇到的瓶颈,基于近年来水力割缝技术在矿井石门揭煤、底板巷消除地应力方面取得的发展,探讨性的开展了水力割缝技术在本煤层强化瓦斯抽采方面的研究工作。提出了用水力割缝技术扩大钻孔的直接影响范围的思路,研究了水力割缝技术对扰动煤体的体积、表面积、单孔瓦斯抽采量、钻孔影响半径等参数,对比分析了水力割缝技术和普通钻孔抽采技术的数据,结果表明水力割缝技术扰动煤体体积可提高6~16倍,影响煤体表面积可提高5.3~8.8倍,单孔抽采流量可提高2.0~2.5倍。同时水力割缝技术可增大单孔有效影响半径,在一定程度上可减少施工工程量。  相似文献   

7.
李生舟  陆占金 《煤炭技术》2020,39(2):121-124
介绍了超高压水力割缝技术及装备、防突原理和工艺方法。现场试验结果表明:超高压水力割缝技术运用后,钻孔瓦斯抽采浓度提升1.75倍,钻孔瓦斯抽采量提高2.3倍,抽采有效半径较对比钻孔提高2.1倍,超高压水力割缝技术卸压增透效果显著。  相似文献   

8.
曹阳 《煤矿机械》2024,(3):124-127
为了实现工作面快速消突,提出布置双排瓦斯抽采钻孔,并实施水力割缝。通过数值模拟,研究不同割缝深度、孔间距、布孔方式对抽采效果的影响。结果表明:单孔有效抽采半径随割缝深度的增加而增加,但增速逐渐放缓,根据数据拟合结果,确定割缝深度为1.5 m;双孔抽采时,钻孔间距越小,瓦斯压力越低,最终确定钻孔间距为7 m;正方形布孔和菱形布孔均可以实现消突目的,正方形布孔覆盖面积大,选择该方式。现场试验表明,水力割缝正方形双排钻孔抽采效果良好,可以达到消突的目的。  相似文献   

9.
针对低透气性突出煤层钻孔工程量大、抽采时间长的难题,提出水力割缝自卸压处理突出煤层的新思路,对比考察了钻孔割缝前后钻孔瓦斯抽采浓度、抽采量的变化规律,通过区域措施效果检验进一步验证了水力割缝自卸压效果。结果表明:采用割缝自卸压增透技术后,达标时间由112 d缩短至72 d,工程量减少了32.7%。  相似文献   

10.
《煤炭技术》2019,(11):116-118
针对煤矿开采过程中面临的瓦斯灾害的威胁,分析了煤体渗透性的影响因素及高压水射流割缝卸压技术的增透机理。在孟家窑煤业5#煤层进行了水力割缝增透强化瓦斯抽采的试验研究,针对切割压力、切割时间、孔内切割间距等割缝参数进行了试验研究。水力割缝后单孔瓦斯排气量从300 L提升到350 L,抽采前10 d的孔内平均瓦斯浓度由22.27%增加到26.66%。对比试验数据显示切割最优压力为70 MPa,切割最优时间为3 min,切割最优间距为1.0 m。最后从数学角度分析并得出水力割缝技术可以有效地释放煤层中的体积应力,提高煤层的透气性,从而提高钻孔内瓦斯浓度百分比,延长抽采时间,提高抽采总量。  相似文献   

11.
为了解决矿井瓦斯预抽中存在的问题,提高矿井瓦斯抽采利用效率,杜绝瓦斯灾害事故发生,以新集二矿瓦斯预抽工艺为研究背景,针对矿井采掘接替紧张、煤层透气性差、瓦斯抽采率低等技术难题,提出了超高压水力割缝与水力压裂联合增透技术。基于岩石力学与流体力学理论,分析了超高压水力割缝与水力压裂联合增透机理。并采用数字模拟方法研究确定了沿槽缝延伸方向,缝槽至煤体深部依次形成破碎区、塑性区、弹性区及原岩应力区,被冲割煤体受高压水射流剪、割应力作用影响,原岩应力区向煤体深部转移,煤体渗透率增大。得出水力压裂钻孔布置在超高压水力割缝形成的塑性区范围内能够达到较好的增透效果,并设计了超高压水力割缝与水力压裂一体化联合增透技术工艺:割缝水压为95~100 MPa,旋转水尾转速为40 r/min,割缝间距为1.0~1.2 m,单刀冲割时间为12 min;水力压裂钻孔直径为95 mm,并采用100 mm的钻孔洗扩装置冲、扩钻孔。通过在新集二矿2201采区220108底板巷2号上钻场的应用结果显示:超高压水力割缝与水力压裂协同增透技术能够明显改善煤层透气性,瓦斯抽采30 d以后,协同超高压水力割缝钻孔平均瓦斯抽采纯量为普通钻孔的10.3倍;协同水力压裂钻孔平均瓦斯抽采纯量为普通钻孔的6.4倍,且能够持续保证较高流量和浓度的瓦斯抽采效果。  相似文献   

12.
13.
针对白皎煤矿突出煤层构造应力高、透气性系数低、瓦斯抽采效果差等问题,在238底板瓦斯抽采巷对B4煤层采用了水力割缝和压裂联合增透技术,应用结果表明该技术相比水力压裂技术和普通抽采技术提高了煤层透气性,瓦斯抽采纯量较水力压裂钻孔提高了1.33倍,瓦斯体积分数是普通抽采钻孔的2.76倍,联合增透钻孔汇总瓦斯体积分数保持在30%以上且无衰减,具有良好的抽采效果。  相似文献   

14.
随着煤矿不断向深部开采,单一透气性深部煤层开采因受瓦斯制约影响,回采难度越来越大。为解决这一技术难题,提高安全保障能力,进行了单一低透深部煤层超高压水力割缝强化增透抽采技术研究。通过在鹤壁中泰矿业3205底抽巷(3)试验研究,有效地解决了瓦斯治理瓶颈,极大地改善了采掘条件,为采掘生产提供了安全保障。  相似文献   

15.
水力割缝有效影响半径是确定水力割缝钻孔布置参数以及评价卸压增透效果的重要依据,本文针对压降法测定水力割缝有效影响半径的原理及方法进行了探讨研究,并将该方法应用于平煤八矿进行现场测试.结果表明,压降法测定水力割缝有效影响半径是一种行之有效的方法,对突出煤层实施水力割缝卸压增透、提高瓦斯抽采效果具有重要意义.  相似文献   

16.
霍尔辛赫煤业有限公司矿井主采的3号煤层,瓦斯高、透气性差、抽采效率低,给安全生产带来较大影响。为解决该问题,在3805工作面试验了顺层钻孔水力割缝技术,通过对比不同割缝压力的瓦斯抽采效果,确定了经济合理的割缝压力值,并通过现场测试得到有效抽采半径。实施水力割缝技术后,瓦斯抽采纯量提高了4~6倍,达到了预期目标。  相似文献   

17.
姚春雨 《中州煤炭》2020,(12):42-46
为了提高瓦斯抽采效率,研究了超高压水力割缝工艺操作流程,主要为装备准备阶段、连接阶段和检查阶段。采用数值模拟软件,分析了割缝深度、割缝宽度和割缝间距等超高压水力割缝参数对煤体卸压的影响,得出了超高压水力割缝参数最优参数,分别为割缝深度1.0 m、割缝宽度0.1 m、割缝间距3.0 m,并进行了工程实践。研究表明,采用超高压水力割缝技术后,瓦斯抽采浓度和瓦斯抽采流量都得到了有效的提高。  相似文献   

18.
19.
针对低渗煤层瓦斯抽采难度大、抽采效率低以及抽-掘-采衔接不紧密等难题,以大佛寺煤矿4#煤层为研究对象,开展了顺层钻孔高压水力割缝现场试验,考察了水力割缝效果。结果表明:(1)当割缝压力为70 MPa,割缝时间为10~15 min时,等效割缝半径为1.16~1.41 m;(2)受水锁效应影响,割缝钻孔瓦斯抽采参数随时间的变化过程可分为抽采初期、抽采稳定期和抽采衰减期3个阶段,其单孔平均抽采浓度、纯流量分别是常规钻孔的1.81~2.36倍和1.93~4.50倍,且割缝间距越小提升效果越显著,衰减越慢;(3)随着负压的增大,割缝钻孔的抽采浓度加速降低,抽采纯流量和混合流量不断升高,但抽采纯流量的增长幅度远小于混合流量的增幅,且差距逐渐拉大。由此可见,高压水力割缝能够增强煤层渗透率,提高瓦斯抽采效率。  相似文献   

20.
利用FLAC3D软件建立水力割缝模型,针对某掘进工作面,选取其正前方12 m处截面为研究对象,在缝槽高度和深度不变的情况下,模拟了单缝槽、双缝槽和多缝槽3种不同宽度缝槽的割缝方案,得到了瓦斯抽采钻孔割缝前后煤体内部应力变化和竖直位移变化、垂直于割缝钻孔上方煤体的下沉量及塑性区破坏情况。结果表明:当缝槽宽度为2 000 mm时,割缝钻孔的卸压效果明显,煤体下沉量较大,钻孔周围塑性区破坏较大,钻孔的稳定性最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号