首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同煤体结构煤的吸附性能及其孔隙结构特征   总被引:10,自引:0,他引:10       下载免费PDF全文
煤的吸附能力是决定煤层含气量的重要参数。采用沁水盆地东南部赵庄井田二叠系山西组3号煤4个不同煤体结构的高煤阶煤样,通过等温吸附试验分析了不同煤体结构煤样在不同温度和压力下的吸附性能;同时对不同煤体结构煤样进行了低温液氮吸附实验,分析了不同煤体结构煤的孔隙结构特征,从煤体孔隙结构层面分析了不同煤体结构煤的吸附控制机理。结果表明:煤样升压吸附符合Langmuir等温吸附方程,饱和吸附量随煤体破坏程度的增加而增高,随着温度的增高而降低。随着煤体破坏程度的增高,孔容和比表面积也相应增大,孔容主要由中孔贡献,比表面积主要由微孔贡献,糜棱煤的孔容和比表面积在不同孔径阶段均最大,其次为碎粒煤、碎裂煤和原生结构煤;低温液氮吸附实验结果与等温吸附试验反映一致规律,这些说明,在同一地质条件下,煤体结构破坏越严重的地区煤层含气量越高。  相似文献   

2.
煤层气的赋存和产出与煤储层孔隙系统的发育程度有关,原生结构煤层受到破坏变形后其孔隙结构特征将发生明显的变化,从而影响煤层气的吸附/解吸和扩散过程。通过对沁水盆地赵庄井田3号煤层不同煤体结构样品进行低温液氮、低压二氧化碳吸附分析和等温吸附试验,分析了不同破坏强度煤的孔隙结构和吸附性变化规律;应用试验数据和数值分形模型,揭示了不同煤体结构煤的孔隙结构分形特征及其对煤中甲烷吸附、扩散的影响。结果表明:随着煤体结构破坏强度的增大,煤的比表面积和孔隙容积均增大,50~300 nm的孔隙所占比例逐渐降低,2~50 nm的微孔和中孔以及小于2 nm的超微孔增加,超微孔为煤中主要吸附孔,孔径主要分布在0.45~0.65 nm和0.80~1.0 nm。N2、CO2和CH4的吸附量随煤体结构破坏程度的增大而增加,吸附性由大到小顺序为原生结构>糜棱结构>碎粒结构>碎裂结构。微孔、中孔和大孔孔隙结构分形维数表明,构造变形后的煤孔隙结构将被简单化,破坏程度较强的煤具有较粗糙的孔隙表面(对应较高的D1)和较为...  相似文献   

3.
煤体的吸附性能代表了煤体储存瓦斯能的能力,而煤体的放散特性表明了煤体释放瓦斯能的能力,两者均是造成煤与瓦斯突出的必要条件。为了研究煤体的吸附性能与煤体的瓦斯放散特性之间的内在联系,结合现有的实验条件,以煤样的极限吸附量与瓦斯放散初速度的关系为切入点,实验研究了不同吸附性能煤体的瓦斯放散特性变化规律,结果表明,煤体的瓦斯放散初速度ΔP随煤体的吸附常数a值的增大而增大,且二者之间存在一定的线性关系。  相似文献   

4.
为揭示突出煤体与原生煤体微晶结构参数和孔隙结构差异,基于XRD、低温液氮吸附、压汞等实验方式并结合分形维数理论,研究了三甲煤矿突出孔洞内外煤样结构参数和分形特征。结果表明:突出煤侧链含量、芳氢率和芳碳率高于原生煤;并且突出煤具有更好的生烃潜力;突出煤芳香度I1与I2均大于原生煤,说明突出煤脂肪官能团高于芳香结构官能团;由于煤中稠环结构产生一定改变,突出煤有效堆砌芳香片数低于原生煤;煤化度指标有小幅度升高,说明原生煤中侧链的含量低于突出煤,导致相对的芳香环数量增大;根据压汞数据得到原生煤的综合几何分形维数为3.30,突出煤为3.37;突出煤和原生煤微孔表面积分形维数分别为2.62和2.13,小孔表面积分形维数分别为2.45和2.23。  相似文献   

5.
韩晋民  武瑛  赵东 《煤》2012,(1):12-13,74
采用自主研制的由放置试样的装置、压力加载装置和强度测定装置组成MDS-200型煤岩三轴应力渗透试验台,针对取自象山井田、燎原井田和桑树坪井田的3号、5号和11号煤层的试验样品进行煤体吸附瓦斯与强度关系的试验。结果表明:①煤体的杨氏模量和单轴抗压强度均随着吸附瓦斯压力的增加而逐渐呈线性衰减;②不同的煤种在同等吸附瓦斯压力下,杨氏模量和单轴抗压强度也是不相同的;③试验结果表明,含较高压力瓦斯的煤体更容易破坏。  相似文献   

6.
为了研究气煤的孔隙的分形特征对瓦斯吸附的影响,通过低温液氮吸附法对阜康气煤的孔隙结构进行测试,采用FHH模型对实验煤样进行分形维数计算,运用高压容量法测定煤样的吸附特性,分析了气煤的分形维数与瓦斯吸附性能的关系。实验结果表明:表面分形维数D_1与Langmuir体积V_L呈正相关,与Langmuir压力p_L呈负相关;但结构分形维数D_2与煤样的Langmuir体积V_L和Langmuir压力p_L之间的相关性不明显;通过分析可知,气煤中孔隙结构的分布和孔隙类型同时影响着瓦斯气体在煤体孔隙中的运移。  相似文献   

7.
为研究含瓦斯煤物质组成成分和孔隙结构参数对煤吸附能力的影响,采用压汞试验测试了5种煤样的孔隙结构,并研究了含瓦斯煤比表面积、平均孔径、孔隙度和分形维数等4种孔隙结构参数,分析了含瓦斯煤物质组成成分和孔隙结构参数对瓦斯吸附能力的影响。研究表明:水分、挥发分、比表面积与瓦斯极限吸附量(V_L)呈二次函数关系,灰分和V_L呈负相关,平均孔径和孔隙度与V_L呈正相关。Langmuir压力(P_L)随着灰分和挥发分的增大而增大,随平均孔径和孔隙度的增大而减小,且与比表面积呈二次函数关系。煤样在不同压力阶段具有不同分形特征,因此具有不同的分形维数D_1(r10nm)和D_2(r10nm)。D_1和D_2均大于2.9,分形特征明显。V_L随着D_1的增大而增大,随着D_2的增大而减小。分形维数与P_L的关系不明显。  相似文献   

8.
煤的吸附孔结构对瓦斯放散特性影响的实验研究   总被引:1,自引:0,他引:1  
为揭示煤的吸附孔结构对瓦斯放散特性影响机理,选择新疆阜康矿区典型矿井煤样,进行低温氮吸附及瓦斯放散初速度实验,研究了煤的吸附孔特征参数及其对瓦斯放散初速度的影响。结果表明:实验范围内阜康矿区煤的吸附孔中瓦斯的主要放散方式是Knudsen及过渡型;吸附孔各参数对瓦斯放散特性的影响不同,平均孔径越大,瓦斯扩散阻力越小,瓦斯放散初速度越大;孔隙及各孔径下的比表面积和孔容越大,瓦斯放散初速度越小;瓦斯放散初速度与微孔和过渡孔的孔容占比为负线性关系,与中孔的孔容占比为正线性关系,与各孔径下比表面积占比无明显关系;煤的孔隙在研究尺度范围内分形特征显著,瓦斯放散初速度随分形维数的增大而线性减小。  相似文献   

9.
邓广哲  张憧 《煤炭技术》2015,34(2):294-296
采用低温氮吸附实验测定6种煤样的孔隙参数及等温吸附曲线,研究煤样孔隙表面分维数与孔隙参数之间的关系。采用FHH模型计算各煤样的孔隙表面分形维数。结果表明:表面分维数能够较好地表征孔隙结构的非均质性及复杂性;分形维数越大,孔隙结构越复杂、孔隙表面越不规则。  相似文献   

10.
为探究脉冲超声对煤体孔隙结构及瓦斯解吸特性的影响,利用全自动压汞仪和自主研发的脉冲超声激励煤吸附解吸瓦斯实验系统,分析不同脉冲次数超声激励前后煤体孔容、比表面积及瓦斯解吸量变化,研究脉冲超声激励对煤体孔隙结构特征及瓦斯解吸的影响。实验结果表明:随着脉冲超声次数增加,中大孔孔隙连通程度明显增大,微小孔孔隙连通程度无显著变化,仍以半封闭孔和封闭孔为主;各孔径段孔容和比表面积均有所增加,其中中大孔孔容与微小孔比表面积增加最为显著;脉冲超声激励后的煤体具有明显分形特征,且分形维数随脉冲次数的增加呈下降趋势;脉冲次数增加,煤体瓦斯解吸量增多,解吸速率加快,且最大解吸量、最大解吸速率与脉冲次数均呈线性正相关关系。实验表明脉冲超声使煤体原生孔隙得到有效改善,孔隙之间相互连通,促进了瓦斯解吸。  相似文献   

11.
采用压汞实验和高压等温吸附实验分析不同变质程度煤的孔隙结构特征及瓦斯吸附能力,并结合煤样工业分析数据,进一步探讨孔隙结构特征对煤层瓦斯渗透性影响。研究表明:2种煤样的压汞孔隙率随煤级的升高呈现出从高到低的变化趋势;松河3号煤样的孔径分布呈现出微小孔径的单峰特点,而林华9号煤样的孔径分布呈现出小孔径和中、大孔径的双峰特点;高压等温吸附实验测的松河3号煤的瓦斯吸附能力要强于林华9号煤。结论认为:煤的孔隙特征、孔隙率和瓦斯吸附能力均受煤变质程度的影响,且在低变质煤特征突出。  相似文献   

12.
为揭示不同变质程度煤的吸附解吸性能,采用低温液氮实验研究不同变质程度的煤孔隙结构特征。结果表明:无烟煤存在大量开放型孔隙,贫瘦煤、焦煤存在大量一端封闭的孔隙;无烟煤的比表面积最大、焦煤的比表面积最小,贫瘦煤的比表面积居中。无烟煤对瓦斯的吸附能力最强,其次是贫瘦煤,焦煤最弱;无烟煤的分形维数最大,贫瘦煤的分形维数居中,焦煤的分形维数最小。随着变质程度的增加,孔隙结构变得复杂,孔隙粗糙度增加。  相似文献   

13.
采集淮南煤田3个不同矿区13-1煤层、焦作矿区中马村煤矿二1煤层不同分层的不同煤体结构煤样进行低温液氮吸附试验,分析研究了不同煤体结构构造煤的孔隙特征。由此将构造煤的低温液氮回线划分为H1、H2、H3三类,构造煤的孔隙划分为4类:两端开口的孔,一端开口的孔,墨水瓶形孔和狭缝形孔。碎裂煤中主要为一端开口的圆筒形孔和两端开口的圆筒形孔;碎粒煤和糜棱煤则主要包含狭缝形平板孔、墨水瓶形孔和一端开口的圆筒形孔。研究表明:构造煤对气体的吸附一般发生在孔径3.3 nm左右的孔隙;随煤体破坏强度增大,比表面积和孔体积的分形维数均在增大。综合孔隙特征研究结果,对糜棱煤、碎粒煤煤层分布发育地区容易引发瓦斯突出的机制进行了探讨。  相似文献   

14.
为研究不同变质程度煤孔隙结构分形特征及其对瓦斯吸附特性的影响,通过压汞试验测试了9组不同变质程度煤样孔隙结构,利用Menger海绵模型分析了不同变质程度煤孔隙结构分形特征,结合煤样吸附常数,研究了孔隙结构分形特征对瓦斯吸附特性的影响。研究结果表明,煤孔隙在不同孔径段具有不同的分形特征,渗流孔分形维数D_1和吸附孔分形维数D_2均随变质程度的增加呈线性增大。煤孔隙分形特征对瓦斯吸附特性具有一定的影响,渗流孔分形维数D_1与吸附常数b呈良好的线性关系,与极限吸附瓦斯量a的关联性不大,表明渗流孔分形维数D_1对吸附瓦斯速率影响较大,对吸附能力影响较小;吸附孔分形维数D_2与极限吸附量a呈正相关关系,与吸附常数b关联关系不明显,说明吸附孔分形维数D_2对瓦斯吸附能力影响较大,对吸附瓦斯速率影响不明显。  相似文献   

15.
为了研究神东矿区不同埋深弱胶结砂岩的孔隙结构特征,以布尔台煤矿4种不同埋深弱胶结砂岩为研究对象,运用低场核磁共振测试仪对4种不同埋深试样进行了测试,分析了不同埋深弱胶结砂岩的T2谱特征、孔径分布和孔喉分布.研究结果表明:4种不同埋深弱胶结砂岩(92.14~94.30 m,118.40~120.69 m,242.27~2...  相似文献   

16.
为深入研究煤体在不同压力条件下吸附瓦斯特性及煤体孔隙结构变化特征,利用核磁共振(NMR)技术对煤体吸附瓦斯进行实验研究。实验结果表明:实验煤样的微小孔峰面积中大孔峰面积裂隙峰面积,表明煤样的微小孔最为发育,煤体孔径以微小孔为主,空隙之间的连通性不强,瓦斯不易流通;随着压力的增加,当瓦斯压力达到一定程度后,煤体会产生新的孔隙,微小孔隙相连通构成了微孔或者中孔,中孔相互连通形成了裂隙,为下一步解吸瓦斯的流通提供了条件,出现瞬时的瓦斯快速解吸;煤样瓦斯吸附解吸特征按照峰值前后分为上升阶段、变化剧烈阶段和基本不变阶段,总体规律上,煤体瓦斯吸附量随着瓦斯压力的增大而增加;在不同的瓦斯压力作用下,核磁共振T_2谱图核磁信号幅度发生显著变化,T_2谱图分布面积与瓦斯压力呈线性关系逐渐增长,即煤体孔隙度随瓦斯压力增加而增加。  相似文献   

17.
煤体对瓦斯吸附热的理论研究   总被引:5,自引:0,他引:5       下载免费PDF全文
刘志祥  冯增朝 《煤炭学报》2012,37(4):647-653
系统地阐述了吸附热产生的微观机理,根据势能模型,得到了基于玻尔兹曼分布的两能态模型,并推导出相应的吸附热计算公式。根据巨正则系综理论,得到了朗缪尔单分子层统计力学模型,并推导出相应的吸附热计算公式;引入德布罗意平均热波长后,得到了朗缪尔单分子层模型吸附热的近似计算公式。比较两种模型的结果可以看出:吸附热受吸附量、吸附中心和分子间平均距离的影响较大,对于外层瓦斯(相对于煤体表面)和内层瓦斯应该采用不同的物理模型进行分析。根据朗缪尔单分子层模型,从吸附的角度出发,研究了煤体表面结构的分形特征,并将二维平面吸附推广到分形表面吸附,得到了基于德布罗意平均热波长的分形维数。  相似文献   

18.
蒋静宇  程远平  张硕 《煤炭学报》2021,46(10):3221-3233
低阶煤广泛分布于我国西北、华北和东北地区且储量较大,但近年来部分低阶煤矿区瓦斯突出灾害严重。为研究低阶煤孔隙结构、瓦斯吸附放散特性及其对瓦斯灾害的影响,采用N2/CO2吸附法和小角X射线散射(SAXS)表征手段,开展瓦斯吸附/解吸试验,运用分形理论,对6组煤样开展系统研究。根据煤样孔隙结构参数和瓦斯吸附/解吸特性参数的关系,获得低阶煤微观孔隙结构与宏观瓦斯吸附放散特性的相关性。结果表明:试验低阶煤煤样≤2 nm的微孔孔容为0.055~0.064 cm3/g,总体上高于试验中阶煤样微孔孔容(0.026~0.060 cm3/g);低阶煤介孔主要分布在2~8 nm,而中阶煤最发育孔径为2~4 nm。低阶煤介孔孔容和比表面积总体大于中阶煤;SAXS结果表明:低阶煤最发育孔径为10 nm左右,而中阶煤孔径在35 nm附近最发育。这与N2吸附法测得煤样最发育孔径约为3 nm存在较大差异,可能煤中存在闭孔或气体吸附法无法测到的孔。分形维数结果表明:低阶煤孔隙较中阶煤孔隙更为复杂。结合傅里叶变...  相似文献   

19.
采用自主研制的由放置试样的装置、压力加载装置和变形测定装置组成MDS-200型煤岩三轴应力渗透试验台,对取自象山、燎原和桑树坪井田的3、5和11煤的试验样品进行煤体吸附瓦斯与变形量关系的试验。结果表明:煤体在同等条件下的吸附性随着外部压力的增加而逐渐减小;自由状态和外部压力加载状态下,煤体的变形均随吸附瓦斯压力的增加而分阶段地逐渐增加,直至较高压力时变形趋于平衡;两种状态下的煤体变形量随吸附量的增加而有规律地增加,表现为开始阶段增长趋势较慢,后期变化较快。  相似文献   

20.
煤体内部孔隙随着煤阶加深而逐步发育,在外界温度、压力等条件的影响下,瓦斯分子可通过吸附作用储存在煤体中。为了探明瓦斯分子在煤体纳米限域内的流动特性,使用傅里叶变换红外光谱、N2(77 K)吸附等手段分析了样品内部官能团种类以及孔径分布。结果表明,煤层孔径以介孔居多,瓦斯分子在该限域条件下的流动会导致其在煤体中的分布不均;纳米尺度条件下,极性基团通过影响煤体表面势阱深浅达到影响瓦斯分子吸附能力的作用;煤体碳骨架发育致密过程中,孔径减小,气体分子运移通道受阻。煤体中微孔发育,墨水瓶形等封闭孔打开,形成圆柱形等连通状孔,增强了瓦斯吸附能力;瓦斯分子与煤体亲合力随着变质程度加深逐步增大,特征吸附能也随之增强;低阶煤样在低压条件下的解吸更为迅速。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号