首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高亚明  张连军  杨文 《中州煤炭》2016,(5):11-12,16
低透气性煤层卸压增透技术严重制约煤层瓦斯抽放。针对松树镇煤矿煤层赋存条件,应用水力割缝技术对该矿回采工作面进行了卸压增透,并通过钻孔瓦斯浓度、抽采负压及钻孔瓦斯流量对水力割缝效果进行考察。结果表明,实施水力割缝技术后,钻孔瓦斯浓度明显上升,考察周期内,绝大部分钻孔瓦斯浓度高于10%;各钻孔的抽采负压数值稳定,钻孔瓦斯总平均流量达到0.034 m3/min,远高于普通钻孔的平均流量0.005 m3/min。  相似文献   

2.
马淑胤 《中州煤炭》2023,(3):134-139+143
针对某矿703综采工作面瓦斯涌出问题,在工作面回采前先对工作面进行顺层孔致裂卸压增透,再施工工作面顺层抽采钻孔治理本煤层瓦斯涌出。结果表明,未压裂区域煤层原始瓦斯含量为6.68 m3/t,压裂区域煤层瓦斯含量约为3.59 m3/t;未压裂区域煤层原始瓦斯压力为0.4 MPa,压裂区域煤层瓦斯压力约为0.14 MPa;未压裂区域煤层透气性系数为0.007 3 m2/(MPa2·d-1),压裂区域煤层透气性系数为0.024 2 m2/(MPa2·d-1),与未压裂区域相比,压裂区域的瓦斯抽采浓度和抽采纯量都有大幅度的提高;703工作面采取措施前,回采工作面相对瓦斯涌出量16.6 m3/t,绝对瓦斯涌出量84.01 m3/min;而703工作面采用综合瓦斯治理措施情况下,回采工作面相对瓦斯涌出量13.29 m3/t,绝对瓦斯涌出量60.28 m...  相似文献   

3.
深部煤层开采时,煤体透气性低、瓦斯压力大,采前瓦斯抽采困难,严重制约煤矿企业的安全生产。为了提高深部矿井低透气性煤层的瓦斯抽采效率,防治煤与瓦斯突出危险,提出采用顺层钻孔高压水力割缝技术的煤层增透方案,并将该技术应用于平顶山十矿己15-16-24130工作面。结果表明,实施水力割裂后钻孔内瓦斯流量大幅提升,变化最小的检验孔瓦斯流量由0.08 m3/min提升至0.12 m3/min,升高50%:高压水力割缝孔布置间距为8 m、水力割裂半径为1 m时,割裂孔的影响半径为4 m;高压水力割缝后距割裂孔1.5 m和4.0 m处煤层透气性分别为2.76 m2/(MPa2·d)、1.28 m2/(MPa2·d),相较割裂前煤层透气性分别提升了145.3倍和67.15倍。  相似文献   

4.
为阐述水力割缝卸压增透技术的原理,在松树镇煤矿通过2组5个钻孔进行为期12 d抽放效果对比考察。未进行水力割缝考察的钻孔最高瓦斯浓度为43%,单孔纯抽瓦斯量0.067 m3/min,持续8 d时间瓦斯浓度降至5%;进行水力割缝考察的钻孔最高瓦斯浓度为75%,单孔纯抽瓦斯量0.198 m3/min,持续7 d时间瓦斯浓度降至9%。通过对比,进行水力割缝考察钻孔纯抽瓦斯量比未进行水力割缝考察钻孔纯抽瓦斯量提高2~7倍,基本达到试验的预期目的。实践证明,水力割缝卸压增透技术为提高低透气性煤层的瓦斯抽放效果提供了一个经济可行的技术途径。  相似文献   

5.
针对阳泉矿区3~#煤层钻孔成孔性差、煤层渗透率低、瓦斯抽采困难等问题。提出了煤层底板梳状长钻孔分段水力压裂增透技术,并在阳泉矿区新景矿进行工业性试验。钻探施工底板梳状长钻孔总进尺1 278 m,包含5个分支孔,主孔长度650 m;分5段压裂施工,累计注液1 863 m3,最高压力22.26 MPa,孔底至孔口最高压力呈下降趋势。压裂完成后,统计分析90 d钻孔瓦斯抽采数据,日均瓦斯抽采纯量0.23~0.89 m3/min,平均0.46 m3/min,钻孔瓦斯抽采体积分数27.82%~93.67%,平均50.88%,较未压裂区域瓦斯抽采体积分数提高了3.52倍,日均瓦斯抽采纯量提高了8.3倍。  相似文献   

6.
《煤矿机械》2017,(8):42-43
针对屯兰煤矿12507突出煤层工作面的工作面巷道掘进时期的瓦斯治理和突出防治难题,提出并试验了底抽巷穿层钻孔水力割缝压裂增透煤层技术,用以提高低透煤层的透气性系数和煤巷条带瓦斯抽采率,结果表明:(1)采取割缝(压裂)综合增透的钻孔,其瓦斯抽采的平均浓度是常规钻孔的2.86倍;(2)支管瓦斯抽采纯流量是未压裂前的2.6倍;(3)煤层残余瓦斯含量下降了3.618 m3/t;(4)割缝压裂综合作业提高了瓦斯抽采效果和抽采效率,具有明显的煤层增透效果。  相似文献   

7.
李川  吕英华  梁文勖 《煤炭工程》2022,(S1):111-115
针对登茂通煤矿1~#煤层在深部区域整体透气性差、瓦斯含量高、传统抽放方法效果差的问题,提出利用超高压水力割缝卸压增透技术提高煤层透气性,并在108底抽巷进行工业试验。通过控制变量法确定在1~#煤层开展超高压水力割缝卸压增透的最优化参数,其中,割缝压力为60~70MPa,割缝时间为25min、割缝转速为80r/min,割缝间距为2m。通过割缝钻孔与普通钻孔抽采情况对比分析,表明割缝后钻孔的抽采浓度是普通钻孔的1.75倍,抽采纯量是普通钻孔的3.25倍,抽采达标时间降低了42%,煤层残余瓦斯含量明显减小,瓦斯抽采效果显著提高。  相似文献   

8.
辛宪耀 《煤炭技术》2022,(2):128-131
针对松软低透煤层瓦斯抽采钻孔塌孔严重、瓦斯抽采效果差、抽采达标周期长、抽掘采衔接紧张等问题,基于现有装备,提出了定向顺层钻孔"钻-冲-护"一体化低透煤层高效促抽瓦斯技术,该技术在长平煤矿实践表明:大功率定向钻机施工煤段长度达到340 m,煤段水力冲孔后总返煤量260.46 t,扩孔孔径φ0.87 m。对冲孔方式进行考察,发现回转冲孔方式和交叉冲孔方式效率优于水平冲孔方式。未采取下筛管工艺抽采钻孔平均瓦斯浓度为25.05%;全程下筛管护孔抽采钻孔平均瓦斯浓度为49.10%,一体化工艺下抽采钻孔百米瓦斯纯流量比普通钻孔水力冲孔护孔后抽采钻孔百米瓦斯纯流量提高了约11倍,瓦斯流量衰减系数降低了9.4%。瓦斯抽采浓度提高约2倍,百米抽采瓦斯纯量由0.08 m3/min增至0.94 m3/min,瓦斯抽采效果明显,保障了矿井的安全高效生产。  相似文献   

9.
针对低透气性煤层瓦斯抽采量少,抽采时间长,煤层整体卸压增透效果差等问题,提出了大直径长钻孔定向水力割缝增透技术。以吉宁煤矿2107胶带运输巷为研究背景,分析了水力割缝增透机理,采用大直径长钻孔技术实现钻孔间煤体定向水力压穿,形成贯穿裂隙并通过高压水携带出大量煤屑,实现煤层卸压和增加煤层透气性。研究结果表明:采用水力割缝后平均抽采流量是普通钻孔的5.5倍,割缝孔平均瓦斯抽采纯量是普通孔平均瓦斯抽采纯量的8.06倍,平均浓度提高33.92%,水力割缝有效增加了煤层透气性,提高了瓦斯抽采率。  相似文献   

10.
武亚男 《煤》2023,(11):67-70
余吾煤业为高瓦斯矿井,主采3号煤层瓦斯吸附性强、透气性差,属于较难抽放煤层。本煤层顺层钻孔区域预抽是工作面瓦斯治理的根本措施,普通钻孔存在钻孔工程量大、瓦斯抽采效率低等问题,推广应用水力造穴增透技术后,抽采效果显著。为进一步提高钻孔抽采效率,余吾煤业公司开展机械式造穴增透技术,并在N2106回风巷顺层钻孔开展效果考察试验,机械造穴钻孔平均抽采纯量达0.053 m3/min,为普通钻孔的4~5倍。  相似文献   

11.
潘雪松 《中州煤炭》2020,(7):27-30,33
为了解决矿井高应力和构造应力影响作用下煤层透气性差、钻孔塑性变形垮孔严重的问题,以松藻煤电公司逢春煤矿M7、M8煤层为试验对象,采用水力压裂和水力割缝相结合的方式,对煤层进行增透,以提高瓦斯抽采效率。介绍了穿层钻孔区域防突措施设计方案,开展了水力压裂钻孔、瓦斯抽采钻孔设计以及注水压力、注水量和保压时间等水力压裂工艺参数试验。通过比较水力压裂、水力割缝增透措施结合硬套管封孔技术及普通钻孔瓦斯抽采情况,表明水力压裂和水力割缝后钻孔瓦斯抽采浓度分别提高16%~36%和4%~16%,瓦斯抽采量(纯量)分别提高了6倍和3倍,可为同类地质条件瓦斯抽采提供参考。现场试验结果表明,复杂地质低渗煤层水力压裂—割缝综合瓦斯增透技术在煤层强化抽采中有较好的实际应用价值。  相似文献   

12.
基于水射流割缝煤层增透技术,分析了割缝后煤体应力分布状态,计算了割缝钻孔径向应力和切向应力。在理论分析水射流割缝钻孔影响半径的基础上,确定基于水射流割缝钻孔布置的技术工艺。根据现场实测数据,统计分析了动态指标,对水射流割缝后煤层瓦斯抽采增透效果进行了验证。中兴矿现场试验表明:与常规钻孔相比,采用水射流割缝钻孔瓦斯抽采浓度提高3.6倍、流量提高2.7倍、纯流量提高9.7倍;上覆三采西翼回风巷平均风排瓦斯涌出量最大减少0.68 m^3/min,降低26.98%;水射流割缝钻孔段瓦斯含量降低0.48 m^3/t;抽采半径为3.0 m时,水射流割缝钻孔段抽采时间41 d,相比常规钻孔抽采时间缩短43 d。  相似文献   

13.
为提高高瓦斯低透气性中硬煤层瓦斯预抽效率,探讨了水力冲孔、水力压裂、水力割缝增透技术适用条件和优缺点。基于超高压水力割缝技术原理,研制了一种穿层钻孔超高压水力割缝装置,主要由金刚石水力割缝钻头、水力割缝浅螺旋钻杆、超高压旋转接头、超高压清水泵、高低压转换器、超高压橡胶管等组成,水压达到60~100 MPa,可实现钻进、切割一体化,使用简单方便。采用该装置在丁集煤矿1361(1)运输巷底板抽采巷11-2煤层穿层预抽钻孔中开展现场试验,煤层瓦斯压力1.43 MPa,瓦斯含量为8.05 m3/t,透气性系数为0.013 m2/(MPa2·d),煤层坚固性系数为0.79;1361(1)运输巷底板抽采巷11号~15号钻场区域单元长度227 m,采用高压水力割缝增透措施,1361(1)运输巷底板抽采巷6号~10号钻场区域单元长度213 m,采用矿井低压水冲孔增透措施。结果表明:超高压水力割缝钻孔平均单刀割缝时间为10.7 min,单刀出煤量为0.31 t,等效割缝半径达1.38 m,煤孔段割缝密度为1刀/m,平均每孔割缝2.6个;超高压水力割缝钻孔平均瓦斯抽采浓度56.97%,是低压冲孔的2.37...  相似文献   

14.
为了解决矿井瓦斯预抽中存在的问题,提高矿井瓦斯抽采利用效率,杜绝瓦斯灾害事故发生,以新集二矿瓦斯预抽工艺为研究背景,针对矿井采掘接替紧张、煤层透气性差、瓦斯抽采率低等技术难题,提出了超高压水力割缝与水力压裂联合增透技术。基于岩石力学与流体力学理论,分析了超高压水力割缝与水力压裂联合增透机理。并采用数字模拟方法研究确定了沿槽缝延伸方向,缝槽至煤体深部依次形成破碎区、塑性区、弹性区及原岩应力区,被冲割煤体受高压水射流剪、割应力作用影响,原岩应力区向煤体深部转移,煤体渗透率增大。得出水力压裂钻孔布置在超高压水力割缝形成的塑性区范围内能够达到较好的增透效果,并设计了超高压水力割缝与水力压裂一体化联合增透技术工艺:割缝水压为95~100 MPa,旋转水尾转速为40 r/min,割缝间距为1.0~1.2 m,单刀冲割时间为12 min;水力压裂钻孔直径为95 mm,并采用100 mm的钻孔洗扩装置冲、扩钻孔。通过在新集二矿2201采区220108底板巷2号上钻场的应用结果显示:超高压水力割缝与水力压裂协同增透技术能够明显改善煤层透气性,瓦斯抽采30 d以后,协同超高压水力割缝钻孔平均瓦斯抽采纯量为普通钻孔的10.3倍;协同水力压裂钻孔平均瓦斯抽采纯量为普通钻孔的6.4倍,且能够持续保证较高流量和浓度的瓦斯抽采效果。  相似文献   

15.
王辉 《煤矿现代化》2022,(6):112-116
韩城矿区主采3号煤层松软,瓦斯含量高、压力大,常规抽采方式效果差,为了实现矿井突出灾害区域超前治理,开展了桑树坪二号井北轨道大巷3号煤层顶板长钻孔水力压裂抽采瓦斯技术研究。在北轨道大巷完成了1个定向长钻孔钻探(主孔长度504 m)及分段水力压裂施工(8段),泵注压力19.6~29.6 MPa,压裂液单段用量56~268 m3,总用量737.7 m3。根据实测及现场观察得出顶板压裂孔压裂影响半径为30~40.5 m;稳定抽采期间,瓦斯抽采浓度10%~40%(平均浓度25.1%),平均抽采纯量0.6 m3/min,抽采效果良好。  相似文献   

16.
赵小龙  刘忠学 《中州煤炭》2016,(7):20-23,29
针对低透气性煤层石门揭煤防突使用常规预抽方法存在钻孔多、效果差和周期长的问题,提出采用水力压裂石门揭煤技术,通过增加煤层裂隙提高透气性、提升抽采效果,从而缩短揭煤周期。同时将水力压裂石门揭煤技术在观音山煤矿一井与常规密集钻孔预抽技术进行对比试验,试验结果表明:压裂后的平均瓦斯抽采浓度由压裂前的20%提高到45%,提高了2.25倍;单孔抽采纯量平均由2×10-3 m3/min提高到5×10-3 m3/min,提高了2.5倍;煤层瓦斯含量由11.238 6 m3/t降低到4.414 0~6.785 2 m3/t,降低了39.6%~60.7%;预抽时间由9个月缩短到5个月,缩短44%。  相似文献   

17.
为了掌握屯留井田3号煤层超高压水力钻割一体化增透合理技术参数,提高钻孔瓦斯抽采效率,对合理割缝压力、不同割缝时间的单刀出煤量进行试验,并对瓦斯抽采效果进行现场考察。试验表明:3号煤层合理割缝压力为90MPa,单刀割缝7min出煤量约为0.32t时,其割缝半径可达1.45~1.62m,钻孔瓦斯抽采效果最佳,为类似煤层超高压水力钻割一体化增透技术参数选择提供参考依据。  相似文献   

18.
左文强 《山东煤炭科技》2023,(5):104-106+109
为提高中兴煤矿松软煤层透气性,有效解决传统钻孔瓦斯抽采难题,通过现场工业试验及瓦斯抽采效果对比相结合的方法,对2号松软煤层水力压裂增透技术及工艺进行了研究。结果表明:水力压裂方案实施后,煤层透气性提高明显,瓦斯抽采浓度、流量分别增幅3.6倍、2.7倍,抽采巷风排瓦斯量平均降低0.68m3/min,减幅27%,水力压裂可有效提升煤层瓦斯抽采效率。  相似文献   

19.
为了解决碎软突出煤层透气性差、瓦斯抽采时间长、抽采难度大的问题,将高压水力割缝技术应用于碎软突出煤层顺层钻孔瓦斯抽采中。在新疆艾维尔沟矿区4号煤层开展了水力割缝试验,施工了7个高压水力割缝钻孔和7个普通抽采钻孔,考察了割缝压力和割缝半径,比较了瓦斯抽采效果。研究表明:4号煤层的割缝压力在55 MPa左右较为合理。在55 MPa割缝压力下割缝5 min,割缝半径大约为0.89 m;下向钻孔不适合采用高压水力割缝措施。水力割缝钻孔与普通抽采孔抽采效果相比,日单孔抽采浓度、单孔抽采流量和抽采纯量至少能提高2倍以上。水力割缝钻孔抽采的前22 d抽采效果明显优于普通抽采孔,但衰减速度很快,大约30 d后,二者抽采效果基本接近。  相似文献   

20.
为增大煤层透气性系数,提高煤层瓦斯抽采效果,通过超高压水力割缝技术,增大煤体暴露面积,给煤层内部卸压、瓦斯释放和流动创造了良好的条件,缝槽上下的煤体在一定范围内得到较充分的卸压,增大了煤层的透气性。结果表明:水力割缝钻孔组瓦斯抽采浓度、纯流量、百米瓦斯抽采纯流量及瓦斯抽采率是对比钻孔的2~4倍,远远大于对比钻孔组,割缝钻孔瓦斯抽采效果显著。研究为其他类似矿井提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号