首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Water adsorption onto thin zeolite 3A wafers has been investigated as a function of time, water vapor concentration, and zeolite sample mass using mid-infrared spectroscopy coupled with multivariate data analysis. Principal component analysis (PCA) of the spectral region of the water combination band was used for quantitative characterization of water adsorption onto the zeolite. The kinetics of the adsorption of water are found to be very reproducible and nearly linear with time. The kinetics of water adsorption based on data from different masses of zeolite are consistent with a diffusion/immobilization model for which the interparticle diffusion rate is comparable to the rate of adsorption. The infrared zeolite bands (1340-1550 cm(-1)) change during the adsorption process and yield more detail about the adsorption sites of the material. PCA applied to the zeolite bands was not directly interpretable. However, multivariate curve resolution applied to the spectral region containing the zeolite bands readily demonstrates that zeolite 3A has three water adsorption sites or environments that are sequentially occupied. Potential explanations for the observations of the multivariate curve resolution (MCR) analysis of these infrared (IR) kinetic adsorption experiments are presented. The explanation most consistent with our data suggests that water adsorbs sequentially on the zeolite to form single, double, and triple water adsorption on single zeolite adsorption sites. The combination of infrared spectroscopy and multivariate analysis is therefore demonstrated to be a powerful method to study detailed adsorption kinetics and mechanisms of the adsorption of molecules onto surfaces.  相似文献   

2.
Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm-1 were measured in the temperature range 30-42 degrees C in steps of 2 degrees C. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmission cell controlled within 0.02 degree C. Pathlengths of 50 microns and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37 degrees C water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between. On the basis of these spectra, prospects for and limitations on data analysis for infrared diagnostic methods are discussed. As an example, the absorptive properties of glucose were studied in the same temperature range in order to determine the effect of temperature on the spectral shape of glucose. The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans.  相似文献   

3.
An end-to-end sensor simulation is a proper tool for the prediction of the sensor's performance over a range of conditions that cannot be easily measured. In this study, such a tool has been developed that enables the assessment of the optimum spectral resolution configuration of a sensor based on key applications. It employs the spectral molecular absorption and scattering properties of materials that are used for the identification and determination of the abundances of surface and atmospheric constituents and their interdependence on spatial resolution and signal-to-noise ratio as a basis for the detailed design and consolidation of spectral bands for the future Sentinel-2 sensor. The developed tools allow the computation of synthetic Sentinel-2 spectra that form the frame for the subsequent twofold analysis of bands in the atmospheric absorption and window regions. One part of the study comprises the assessment of optimal spatial and spectral resolution configurations for those bands used for atmospheric correction, optimized with regard to the retrieval of aerosols, water vapor, and the detection of cirrus clouds. The second part of the study presents the optimization of thematic bands, mainly driven by the spectral characteristics of vegetation constituents and minerals. The investigation is performed for different wavelength ranges because most remote sensing applications require the use of specific band combinations rather than single bands. The results from the important "red-edge" and the "short-wave infrared" domains are presented. The recommended optimum spectral design predominantly confirms the sensor parameters given by the European Space Agency. The system is capable of retrieving atmospheric and geobiophysical parameters with enhanced quality compared to existing multispectral sensors. Minor spectral changes of single bands are discussed in the context of typical remote sensing applications, supplemented by the recommendation of a few new bands for the next generation of optical Sentinel sensors.  相似文献   

4.
We describe the performance of a high-sensitivity wavelength modulated cavity enhanced infrared tunable diode laser absorption spectrometer for the detection of water vapor in the 1.37 mum region. The spectrometer can measure a fractional absorption of approximately 10(-5) for an absorption path length of a few kilometers. The instrument's sensitivity is more than sufficient to detect water isotopomers (H(2)(16)O, H(2)(18)O, HDO) at Martian atmospheric concentrations. The instrument is amenable to miniaturization, so a future compact, multiple-species version of the spectrometer will be highly suitable for in situ planetary exploration.  相似文献   

5.
A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.  相似文献   

6.
Chen Y  Wang HS  Umemura J 《Applied spectroscopy》2010,64(10):1186-1189
Infrared absorption bands due to water vapor in the mid-infrared regions often obscure important spectral features of the sample. Here, we provide a novel method to collect a qualified infrared spectrum without any water vapor interference. The scanning procedure for a single-beam spectrum of the sample is divided into two stages under an atmosphere with fluctuating humidity. In the first stage, the sample spectrum is measured with approximately the same number of scans as the background. If the absorbance of water vapor in the spectrum is positive (or negative) at the end of the first stage, then the relative humidity in the sample compartment of the spectrometer is changed by a dry (or wet) air blow at the start of the second stage while the measurement of the sample spectrum continues. After the relative humidity changes to a lower (or higher) level than that of the previously collected background spectrum, water vapor peaks will become smaller and smaller with the increase in scanning number during the second stage. When the interfering water lines disappear from the spectrum, the acquisition of a sample spectrum is terminated. In this way, water vapor interference can finally be removed completely.  相似文献   

7.
Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 microm spectral region (2v1 and vl + v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.  相似文献   

8.
The effect of a nonlinear response of mercury cadmium telluride (MCT) detectors to photon flux is to cause a large offset and a slow variation in the zero-line of single-beam Fourier transform infrared (FT-IR) spectra, which dramatically reduce the accuracy to which strongly absorbing bands or lines can be measured. We describe a noniterative numerical technique by which the baseline offset can be corrected by adjusting the values of the maximum point in the interferogram (the "centerburst") and the points on either side. The technique relies on the presence of three spectral regions at which the signal is known to be zero. Two of these are found in all spectra, namely, the region below the detector cutoff and the high-wavenumber region just below the Nyquist wavenumber where the interferogram has been electronically filtered. In open path FT-IR measurements there are several regions where atmospheric water vapor and CO2 are totally opaque. We have selected the region around 3750 cm(-1). This algorithm is even shown to work well when the interferogram is clipped, i.e., the value at the centerburst exceeds the dynamic range of the analog-to-digital converter.  相似文献   

9.
Arnott WP  Schmitt C  Liu Y  Hallett J 《Applied optics》1997,36(21):5205-5216
Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions.  相似文献   

10.
Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.  相似文献   

11.
Transmittance Fourier transform infrared (FT-IR) spectra of liquid water in the 4-80 degrees C temperature range are reported in the whole mid-infrared (MIR) region (4000-360 cm (-1)). The spectra were recorded by using a newly developed, home-made transmittance cell, working in light vacuum conditions (pressures of the order of 3-4 millibar). This permits the elimination of the aqueous vapor bands from the liquid spectra, particularly in the bending region, and the rapid collection of data without fluxing large amounts of nitrogen through the interferometer sample chamber. The temperature evolution of the OH stretching and HOH deformation bands is discussed in terms of Gaussian components analysis and a two-state model describing the equilibrium between different H-bond structures of liquid water. From this picture, structural and thermodynamic information about the hydrogen-bonding network of water is obtained.  相似文献   

12.
Powell I  Cheben P 《Applied optics》2006,45(36):9079-9086
We describe the modeling of the generic spatial heterodyne spectrometer. This instrument resembles a somewhat modified Michelson interferometer, in which the power spectrum of the input source is determined by performing a one-dimensional Fourier transform on the output intensity profile. Code has been developed to analyze the performance of this type of spectrometer by determining the dependence of both spectral resolution and throughput on parameters such as aperture and field of view. An example of a heterodyne spectrometer is developed to illustrate the techniques employed in the modeling and a comparison undertaken between its performance and that of a conventional spectrometer. Unlike the traditional Fourier transform infrared system, the heterodyne spectrometer has the very desirable feature of having no moving components.  相似文献   

13.
Van Allen R  Murcray FJ  Liu X 《Applied optics》1996,35(9):1523-1530
We conducted year-round measurements of the downwelling atmospheric infrared emission over the South Pole in 1992. The instrument covered the 550-1600-wave-number region with 1-wave-number resolution. We calculated the water vapor content for clear-sky cases and found a good correlation with the surface temperature, with values ranging from 0.2 to 0.8 mm. Ozone-sonde profiles were compared with total column abundances of O(3) retrieved from the spectra. The experiment is explained in detail, including the instrumentation, calibration, and retrieval methods used. The calibrated spectra contain information about several trace gases, water, clouds, temperature profiles, and aerosols.  相似文献   

14.
We describe a state-of-the-art tunable ultraviolet (UV) Raman spectrometer for the 193-270 nm spectral region. This instrument allows for steady-state and transient UV Raman measurements. We utilize a 5 kHz Ti-sapphire continuously tunable laser (approximately 20 ns pulse width) between 193 nm and 240 nm for steady-state measurements. For transient Raman measurements we utilize one Coherent Infinity YAG laser to generate nanosecond infrared (IR) pump laser pulses to generate a temperature jump (T-jump) and a second Coherent Infinity YAG laser that is frequency tripled and Raman shifted into the deep UV (204 nm) for transient UV Raman excitation. Numerous other UV excitation frequencies can be utilized for selective excitation of chromophoric groups for transient Raman measurements. We constructed a subtractive dispersion double monochromator to minimize stray light. We utilize a new charge-coupled device (CCD) camera that responds efficiently to UV light, as opposed to the previous CCD and photodiode detectors, which required intensifiers for detecting UV light. For the T-jump measurements we use a second camera to simultaneously acquire the Raman spectra of the water stretching bands (2500-4000 cm(-1)) whose band-shape and frequency report the sample temperature.  相似文献   

15.
In preparation for a possible space mission, a breadboard version named REFIR-BB of the Radiation Explorer in the Far Infrared (REFIR) instrument has been built. The REFIR is a Fourier-transform spectrometer with a new optical layout operating in the spectral range 100-1100 cm(-1) with a resolution of 0.5 cm(-1), a 7-s acquisition time, and a signal-to-noise ratio of better than 100. Its mission is the spectral measurement in the far infrared of the Earth's outgoing emission, with particular attention to the long-wavelength spectral region, which is not covered by either current or planned space missions. This measurement is of great importance for deriving an accurate estimate of the radiation budget in both clear and cloudy conditions. The REFIR-BB permits the trade-off among all instrument parameters to be studied, the optical layout to be tested, and the data-acquisition strategy to be optimized. The breadboard could be used for high-altitude ground-based campaigns or could be flown for test flights on aircraft or balloon stratospheric platforms. The breadboard's design and the experimental results are described, with particular attention to the acquisition strategy and characterization of the interferometer. Tests were performed both in laboratory conditions and in vacuum. Notwithstanding a loss of efficiency above 700 cm(-1) caused by the poor performance of the photolithographic polarizers used as beam splitters, the results demonstrate the feasibility of using the spectrometer for space applications.  相似文献   

16.
采用等离子增强化学气相沉积工艺在硅片上制备a-Si:H薄膜,用傅里叶变换红外光谱仪测试薄膜的红外光谱吸收峰。研究了衬底温度、工艺压强和氢气稀释比对a-Si:H薄膜中氢含量的影响。结果表明,随着衬底温度升高,氢含量显著减小;压强增大时,氢含量也增大;氢气稀释比增大,氢含量反而减小。选择适当的工艺参数,可以控制a-Si:H薄膜的氢含量,从而改善a-Si:H薄膜性能和微结构。研究结果对低温多晶硅制造工艺也有一定的指导意义。  相似文献   

17.
Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.  相似文献   

18.
Richter R  Coll C 《Applied optics》2002,41(18):3523-3529
The retrieval of surface emissivity in the 8-14-microm region from remotely sensed thermal imagery requires channel-averaged values of atmospheric transmittance, path radiance, and downwelling sky flux. Band-pass resampling introduces inherent retrieval errors that depend on atmospheric conditions, spectral region, bandwidth, flight altitude, and surface temperature. This simulation study is performed for clear sky conditions and moderate atmospheric water vapor contents. It shows that relative emissivity retrieval errors can reach as much as 3% for broadband sensors (1-2-microm bandwidth) and 0.8% for narrowband instruments (0.15 microm), even for constant surface emissivity. For spectrally varying surface emissivities the relative retrieval error increases for the broadband instrument by approximately 2% in channels with strong emissivity changes of 0.05-0.1. The corresponding retrieval errors for narrowband sensors increase by approximately 3-4%. The channels in the atmospheric window regions with lower transmittance, i.e., 8-8.5 and 12.5-14 microm, are most sensitive to retrieval errors.  相似文献   

19.
Tan Z  Long X 《Applied spectroscopy》2012,66(5):492-495
A developed spectrometer based on optical-feedback cavity ring-down spectroscopy (OF-CRDS) has been demonstrated with a distributed feedback laser diode and a V-shaped glass ceramic cavity. The laser is coupled to the V-shaped cavity, which creates an absorption path length greater than 2.8 km, and resonance between the laser frequency and the cavity modes is realized by modulating the cavity length instead of tuning the laser wavelength to obtain a higher resolution. A noise-equivalent absorption coefficient of ~2.6 × 10(-8) cm(-1)Hz(-1/2) (1σ) is determined with spectral resolution of ~0.003 cm(-1) and spectral range of 1.2 cm(-1). As an application example, the absorption spectrum measurement of water vapor in the spectral range of 6590.3~6591.5 cm(-1) is demonstrated with this spectrometer.  相似文献   

20.
A new method of spectral subtraction for gas-phase Fourier transform infrared (FT-IR) spectra was developed for long-path gas measurements. The method is based on minimization of the length of the spectrum that results from subtracting the spectrum of an individual component of a gas mixture (water, CO(2), etc.) from the experimental spectrum of the mixture. For this purpose a subtraction coefficient (k(min)) is found for which the length of the resulting spectrum is minimized. A mathematical simulation with two Lorentzian absorption bands was conducted and the limits of application for the proposed method were determined. Two experimental examples demonstrate that a successful result could be achieved in the case when the subtrahend spectrum contains a number of narrow absorption bands (such as the spectrum of water vapor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号