共查询到18条相似文献,搜索用时 46 毫秒
1.
以核桃壳为原料,采用KOH活化法制备活性炭,并将其用作超级电容器电极材料。利用N2吸附和扫描电镜(SEM)表征活性炭的孔结构及表面形貌,系统研究碱炭比(KOH与核桃壳炭化料的质量比)对活性炭孔结构的影响,并采用恒流充放电及循环伏安等测定核桃壳活性炭电极材料在3mol/L KOH电解液中的电化学性能。结果表明,随着碱炭比的增大,活性炭的比表面积、总孔容及中孔比例先逐渐增大后稍有减小。当活化温度为800℃,活化时间为1h,碱炭比为4时,可制备出比表面积为2404m2/g,总孔容为1.344cm3/g,中孔比例为28.6%,孔径分布在0.7~3.0nm之间的高比表面积活性炭。该活性炭用作超级电容器电极材料具有良好的大电流放电特性和优异的循环性能,电流密度由50mA/g提高到5000mA/g时,其比电容由340F/g降低到288F/g,经1000次循环后,比电容保持率为93.4%。 相似文献
2.
3.
利用硅烷偶联剂作为改性碳纤维的接枝材料,探索γ-氨乙基氨丙基三甲氧基硅烷(KH-792)改性前后碳纤维电化学性能和电场响应性能的变化。结果表明,改性后碳纤维电极的电化学性能显著提升,比容量为105.96 F/g,是未改性电极的4.58倍,未改性电极存在的低频容抗现象也得到改善。改性后,电极对的极差稳定性提高,日漂移量最低10μV/d,能够很好地响应1 m V/1 m Hz电场信号,电极对的电化学自噪声可低至1.7 n V/rtHz@1 Hz,与未改性电极对的自噪声相比明显降低。 相似文献
4.
糠醇树脂炭化产物作为锂离子电池炭电极材料的研究(Ⅰ):炭化产物?… 总被引:7,自引:1,他引:6
测试分析了炭化处理条件对糠醇树脂炭化产物组成和结构的影响。结果表明:糠醇树脂炭化裂解过程首先是五员杂环内的碳氧键发生断裂,引起碳氢键断裂,然后经过重排又转变成了一个具有碳碳双键的六员环体系,并在此基础上进一步发生脱氢反应,还原性气氛中,经620℃炭化处理的样品出现了明显尖锐的(100)晶面特征衍射峰,同时还发现了(110)和(006)晶面特征衍射峰,表明糠醇树脂是一种较易石黑化的树脂材料,碳化样品 相似文献
5.
研究了硝酸活化时间对煤基电极材料表面性质及吸附性能的影响,采用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)对煤基电极材料表面性质及形貌进行表征。研究表明,随着硝酸活化时间的延长,煤基电极材料的活化产率和抗压强度逐渐减小,而碘吸附值则呈先增大后减小的趋势,材料表面羧基、内酯基及酚羟基含量逐渐增加。活化8h时煤基电极材料的收率为67.64%,抗压强度为0.234 MPa,碘吸附值达到了301.72mg·g~(-1),表面含氧官能团总量提高了1.44倍。电化学测试结果表明,煤基电极具有良好的电容特性并形成稳定的双电层结构,活化时间越长,扩散过程内阻越小。电吸附处理后氰化废水中各离子的去除率均随活化时间的延长而增大,活化8h时铜及总氰离子的去除率分别可达到90%与68%。 相似文献
6.
以腐殖酸为前驱体,通过高温热处理制备锂离子电池负极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征。结果表明,腐殖酸基石墨化材料呈现出较为规整的石墨片层结构,且随着石墨化温度的升高,所得材料的石墨化度也越来越高。腐殖酸基石墨化材料均表现出良好的电化学性能,石墨化温度为2 800℃所制备的石墨化材料的首次放电比容量为356.7 mAh/g,充电比容量为277.6 mAh/g,首次充放电的库仑效率为77.81%,在1C和2C倍率下50次充放电循环后的容量保持率分别高达99.4%、95.9%,是一种理想的锂离子电池负极材料。 相似文献
7.
通过改变有机酸与无机酸的配比研究合成高电导率聚苯胺的最佳条件,使用硝酸对活性炭进行改性,测定活性炭的沉降质量和活化指数并筛选出吸附性能最佳的改性活性炭,将最佳工艺条件下合成的聚苯胺与改性活性炭进行复合制备了聚苯胺/改性活性炭复合电极材料。通过X射线衍射、扫描电子显微镜和电化学性能测试对复合电极材料的结构和性能进行表征和研究。结果表明:用质量分数3%的硝酸改性的活性炭掺杂聚苯胺,二者的相容性最好,且改性活性炭含量为25.5%(质量分数)时,制备的复合电极材料比电容最大,为282F/g,比纯聚苯胺的比容量(210F/g)增加了34.3%。电化学性能测试表明,聚苯胺/改性活性炭复合电极材料内阻小,阻抗高,电容性能优良。 相似文献
8.
9.
以中温煤沥青为原料,采用酸溶液脱灰以及氢氧化钾活化工艺制备了超纯煤沥青基活性炭,系统研究了活化温度对样品的微观形貌、孔结构以及电化学性能的影响。结果表明,随着活化温度的提高,样品的孔结构变得发达,孔径分布变宽;总比表面积和总孔体积先增加后又略微减小,中孔比表面积和中孔体积逐渐增大,在0.2A/g电流密度下比容量高达300F/g,10A/g电流密度时仍保持为174F/g,5A/g电流密度下充放电循环5000次以后,其比容量保持率高达98%,表明样品具有良好的倍率特性和循环稳定性能。 相似文献
10.
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。 相似文献
11.
以笋壳为原料,采用氯化锌活化法制备活性炭,通过正交试验研究了氯化锌与笋壳质量比、氯化锌溶液浓度、活化温度、活化时间等因素对笋壳基活性炭的活化收率、碘吸附值和亚甲基蓝吸附值的影响.研究表明,活化温度对活性炭性能的影响最显著;氯化锌活化法制备笋壳基活性炭的最佳条件为:m(氯化锌)/m(笋壳)=2∶1,氯化锌溶液浓度为5%,活化温度为600℃,活化时间为90min.采用氮气吸附-脱附法对最佳条件下制备的活性炭进行表征,结果表明,该条件下制备的活性炭为中孔型活性炭. 相似文献
12.
以聚酰亚胺(PI)薄膜边角料为前驱体, 采用CO2物理活化法制备高比表面活性炭。研究了活化工艺对PI活性炭孔结构性能的影响及其活化机理, 探讨了活性炭孔结构对其电化学性能的影响。结果表明, PI薄膜可以在相对较低的温度下经CO2活化制备出具有无定型微晶质炭结构、孔隙结构发达的活性炭, 比表面积最高可达2809 m2/g, 总孔容积达1.423 cm3/g; 通过控制CO2活化工艺, 可实现对PI活性炭的孔道尺度与分布的调控。作为超级电容器电极材料, PI活性炭在100 mA/g条件下, 比电容高达237 F/g, 电容保持率为86%。孔径集中于0.7~2 nm, 并存在适量介孔的活性炭具有极佳的电化学性能。 相似文献
13.
以河南永城无烟煤为原料、KOH为活化剂制备了高比表面积的煤基活性炭,采用低温N_2吸附法对活性炭的比表面积、孔容及孔径分布进行了表征,并对其用作双电层电容器电极材料的电化学性能进行了系统测试.在KOH与煤的质量比为4:1、活化温度为800℃、活化时间为1h的条件下制备出的活性炭其比表面积高达3224m~2/g,总孔容达1.76cm~3/g,中孔率为57.95%.该活性炭电极在3mol/L KOH电解液中的比电容高达324F/g,且具有良好的循环性能,当电流密度为40mA/g时,经1000次循环后,比电容保持率超过92%,且其漏电流很小. 相似文献
14.
玉米芯活性炭的制备及其电化学性能研究 总被引:1,自引:0,他引:1
以玉米芯为原料,采用KOH活化法制备超级电容器用活性炭。利用低温氮气吸附及恒流充放电、循环伏安、交流阻抗等方法测定活性炭的孔结构及其用作电极材料的电化学性能。研究了脱灰对玉米芯活性炭孔结构及其电化学性能的影响。结果表明,在碱炭比3∶1、活化温度为800℃、活化时间为1h的条件下,可以制备出比表面积为2019m2/g、总孔容为1.084cm3/g、中孔率为15.6%的高比表面积活性炭。玉米芯经脱灰处理可以显著改善其所制活性炭的孔隙发达程度和中孔分布,脱灰玉米芯活性炭的比表面积、总孔容及中孔率分别可达2311 m2/g、1.246cm3/g和26.0%。玉米芯活性炭电极材料在3mol/L KOH的电解液中具有良好的电化学性能,其比电容量可达253F/g。脱灰玉米芯活性炭电极的比电容量更高(可达278F/g),比电容提高9.9%,且内阻更小。 相似文献
15.
以椰壳为原料,采用化学活化法制备不同比表面积和孔结构的活性炭,通过改变制备工艺参数来调节活性炭的比表面积和孔结构。将活性炭负载60%(质量分数)硫后,作为锂硫电池的正极材料,研究活性炭孔结构对锂硫电池性能的影响。结果表明:随着活性炭比表面积的增加,中孔比例增加,锂硫电池比容量逐步提高。其中,当活化剂与炭化料的质量比为4时,活性炭的比表面积达到2900m2/g,中孔率达到15.36%。在电流密度为200mA/g时,首次放电比容量高达1294.5mAh/g,循环100次后的可逆比容量仍然高达809.3mAh/g。 相似文献
16.
利用水热法,以硝酸钴为原料,分别以碳酸氢铵、六次甲基四胺为沉淀剂,制备了Co3O4。借助X射线衍射、扫描电子显微镜手段对样品进行表征。以六次甲基四胺为沉淀剂制得的Co3O4,在6 mol.L-1KOH水溶液中,电位窗口为0~0.4V内,通过循环伏安和恒流充放电测试,显示该材料制备的电极具有良好的电容行为。充放电流在为5 mA时,单电极的比容量达到239 F.g-1,是以碳酸氢铵为沉淀剂制得的Co3O4电极的1.57倍,说明以六次甲基四胺为沉淀剂制备的Co3O4具有较好的电化学电容性能。 相似文献
17.
利用不同价态的镍的氧化物(Ni Ox)为脱氢催化剂,活性炭(AC)为成炭促进剂,制备出了高效成炭阻燃材料,并研究了Ni的价态和AC含量及配比对聚丙烯(PP)催化成炭中PP自身成炭的影响。实验结果表明,Ni O与AC协同具有显著的催化成炭效果,其成炭率最高可达到32.3%;热释放速率(HRR)、质量损失速率(MLR)、热重分析表明PP/NiO/AC复合材料的HRR、MLR等燃烧特征参数均有所降低,具有较明显的阻燃性能和热稳定性;扫描电镜、高倍扫描电镜、透射电镜显示成炭结构为稳定的多壁碳纳米管(CNTs);X射线衍射结果表明NiO_x高温下还原成金属Ni,Ni作为活性中心催化PP脱氢裂解。 相似文献
18.
以废茶叶的炭化料为前驱体,KOH为活化剂(碱炭比1∶1、2∶1、3∶1),在800℃下活化1h制备双电层电容器用活性炭电极材料。利用扫描电镜、低温N2吸附对活性炭的形貌、孔结构进行表征,采用恒流充放电、循环伏安和交流阻抗等测试方法评价其在3mol/L KOH电解液中的电化学性能。结果表明,3种活性炭比表面积、总孔容和中孔率最高分别达1 900m2/g、0.919 4cm3/g和35.7%;3种活性炭电极材料在0.055 6 A/g电流密度下的比电容分别为202F/g、255F/g、194F/g,电流密度增加到2.780A/g时,电容保持率分别为84.2%、67.1%、86.6%;等效串联电阻仅为0.10~0.12Ω;在碱碳比为2∶1时制备的活性炭电极材料在2.363A/g下比电容为148F/g,经1 000次循环充放电后,其质量比电容为147.7F/g,电容保持率高达99.3%。 相似文献