首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 161 毫秒
1.
制备了3种阳极(未改性阳极、氨水改性阳极、NH_4HCO_3电化学氧化改性阳极)组建海底沉积物微生物燃料电池(MSMFCs),探究阳极的不同氨改性方法对含油MSMFCs电化学性能和石油降解率的影响。结果表明,电化学氧化改性阳极的电容特性是未改性阳极组的1.78倍,并且其抗极化能力最强,交换电流密度为2.57×10~(-2)A·m~(-2),是未改性的5.00倍;由电化学氧化改性阳极组建的电池的最大输出功率密度是1.53×102m W·m~(-2),较空白组的增加3.56倍,且该电池阳极沉积物中石油的降解率是空白组的10.40倍,这是因为改性阳极表面连入了有利于微生物附着的酰胺基团和氨基基团,提高了电池电化学性能并加速了石油的降解。  相似文献   

2.
使用电沉积的方法制备导电聚噻吩修饰的碳毡及在沉积物中添加甲硫氨酸组成一种新型双改性阳极,以此构建海底沉积物微生物燃料电池,并对阳极的电化学性能和电池性能进行测试。结果表明,双改性阳极表面微生物的数量为空白组的11.30倍,生物膜电容是空白组的1.4倍,说明双改性阳极提高了微生物的数量;双改性阳极循环伏安电容量(302.6 F/cm~2)是空白组(38.20 F/cm~2)的8.0倍,峰电流密度为5.980 A/m~2,交换电流密度(48.29×10~(-3)m A/cm~2)是空白组(0.073 7×10-3m A/cm~2)的651.3倍,说明双改性组的氧化还原电化学活性、抗极化能力和电子转移动力学活性显著提高;双改性电池的输出功率(190.6 m W/m~2)是空白组(71.8 m W/m~2)的2.7倍,说明双改性方法提高了电池阳极的电化学性能和电池性能。  相似文献   

3.
以天然海泥(BMFC-0)、添加尿素的海泥(BMFC-1)和添加乳酸的海泥(BMFC-2)构建海底沉积物微生物燃料电池(BMFCs),研究外源添加营养物质对BMFCs电池性能及电极电化学性能的影响。结果表明,尿素和乳酸这两种营养物质明显影响海泥中微生物的数量和电化学性能;计数结果表明,BMFC-2中的细菌数量最多,约为1.08×10~(11)cfu/m~2,分别是BMFC-1和BMFC-0的2.97倍和13.5倍。Tafel测试结果表明,BMFC-2阳极生物膜电化学活性高于BMFC-1和BMFC-0;BMFC-1和BMFC-2的阳极电子交换动力学活性分别是BMFC-0的1.30倍和1.63倍。通路状态下,BMFC-2的输出电压最大(约520 mV),BMFC-0的输出电压最低(约175 mV);BMFC-2的最大输出功率密度为96.57 mW·m~(-2),分别是BMFC-0(10.94 mW·m~(-2))和BMFC-1(51.57 mW·m~(-2))的8.83倍和1.87倍。根据外源营养物质对阳极表面生物膜电容特性影响的分析,提出了外源营养物提高电池性能的模型,阴极表面细菌数量增多,代谢产生的电子数量增加,生物膜增厚,生物模电容和双电层电容增大。  相似文献   

4.
选取500℃、650℃、800℃对石墨碳毡阳极进行氨气处理,分别构建海底沉积物微生物燃料电池(MSMFCs)。结果表明:改性后其微生物活性和电化学活性均明显提高。500℃改性阳极表面微生物数量(10.420×10^11 cfu/m^2)是Blank组的2.9倍,说明500℃氨气改性增加了微生物的附着量。500℃改性阳极循环伏安电容性能(62.1 F/m^2)是Blank组的2.0倍,表明其氧化还原电化学活性显著提高;电荷转移电阻(14.46Ω)为Blank组(62.39Ω)的1/4,交换电流密度是Blank组的1.1倍,说明500℃氨气处理提高了阳极的电子转移动力学活性和抗极化能力。500℃改性阳极的输出功率(60.67 mW/m^2)为Blank组(29.17 mW/m^2)的2.1倍,其长期输出电压达到692 mV且产电更加稳定,电池性能显著提升。  相似文献   

5.
首次将四氧化三钴/石墨(Co_3O_4/G)复合材料用于海底沉积物微生物燃料电池(MSMFCs)阳极改性,并对阳极电化学性能和电池性能进行研究。结果表明,Co3O4/G复合改性阳极表面的微生物附着数量是空白组的6.1倍;其氧化还原电化学活性和电容特性分别是空白组的16.2倍和31.0倍;交换电流密度达到1.366×10-3m A·cm-2,电子转移动力学活性是空白组的215.6倍,且其抗极化能力最强;电荷转移电阻降至空白组的2/5,并且双电层电容和生物膜电容均得到增加;其组成电池的功率密度为735.1 m W/m2,是空白组电池的4.6倍。机理分析表明,Co_3O_4和石墨的协同作用使复合改性阳极的电容性能和电子转移速率得到提高。  相似文献   

6.
采用电沉积法和浸渍法制备了氧化锡/多壁碳纳米管(SnO_2/MWCNTs)复合材料,并首次将其应用在海底沉积物微生物燃料电池(MSMFCs)的阳极改性,测试分析SnO_2/MWCNTs改性阳极的电化学性能和由其组成的电池性能。结果表明,SnO_2/MWCNTs复合阳极的氧化还原电化学活性和电子转移动力学活性分别是空白组的28.26倍和983.7倍;电容性能是空白组的43.14倍;阳极电荷转移电阻约是空白组的1/4。复合改性阳极组MSMFCs的最大功率密度(1 085.1 m W/m2)是空白组的2.17倍。机理分析表明,MWCNTs提高了阳极的导电性,SnO_2使氧化还原反应更容易进行,阳极的电容性能增加;在特殊的海洋弱碱条件下,SnO_2和MWCNTs的增强协同作用使复合改性阳极表现出更加优异的性能。  相似文献   

7.
研究了一种将微生物包埋在导电水凝胶中制备成微生物燃料电池(microbial fuel cell,MFC)阳极的新方法,该方法可以增加阳极上微生物的数量,并使多数微生物处于分散状态以利于代谢的扩散。该方法构建的阳极用在MFC中,显示了良好的效果。其最高功率密度和工作电压分别为0.243 W/m~2和0.350 V,比使用传统阳极的MFC分别高出89.843%和16.667%;其内阻则为263.780Ω,比使用传统阳极的MFC低78.973%。  相似文献   

8.
为获得机械强度高、电化学性能优良的铜电积阳极材料,采用合金重熔法制备Pb-CaSn-xRE合金。通过金相分析、硬度测试研究了稀土元素对合金组织及力学性能的影响。采用阳极极化、循环伏安曲线和交流阻抗测试研究了Pb-Ca-Sn-xRE合金在硫酸铜溶液下的电化学行为。实验结果表明:添加稀土元素可使合金硬度提高36.67%以上的同时细化合金组织,缩减晶粒尺寸,促使电极的机械强度增加;200A·m~(-2)电流密度作用下的析氧过电位减小,其中添加0.10%RE时η值最小(0.744V),相对降低程度达82mV;发生氧化还原反应时峰强度增大,表观交换电流密度i0提高数个等级,可达到3.071×10~(-6)A·cm~(-2)(0.10%RE),表现出较好的电催化活性。  相似文献   

9.
采用阳极氧化法制备二氧化钛(TiO_2)纳米管,采用改良Hummers氧化法-浓碱法制备还原氧化石墨烯(RGO),采用阳极电化学沉积法制得RGO/TiO_2纳米管复合材料,以复合材料为反应阴极,以铂片(Pt)为反应阳极,光电催化还原二氧化碳(CO_2)为乙醇。并对制得的RGO/TiO_2纳米管复合材料进行了表征。结果证明:采用阳极电化学沉积法施加20V电压反应6h可有效制得RGO/TiO_2纳米管复合材料;以2%(wt.,质量分数)碳酸氢钠(NaHCO_3)水溶液为电解液,在紫外灯照射下施加1.5V电压,反应温度为50℃,反应时间为1h条件下,CO_2被还原为乙醇,产量为185.08nmol/(h·cm~2)。  相似文献   

10.
为了提高环保型阳极氧化膜的耐蚀性,以氨基乙酸为添加剂,制取镁合金阳极氧化膜.用扫描电子显微镜(SEM)和金相显微镜(OM)观察阳极氧化膜的表面及截面形貌,采用极化曲线(Tafel)和电化学交流阻抗谱(EIS)等电化学方法,检测和评价了镬合金阳极氧化膜的耐蚀性.结果表明:随着氨基乙酸浓度的升高,阳极氧化膜表面趋于平整,孔洞变小,膜表面微观形貌更加连续致密;与不添加氨基乙酸所形成的氧化膜相比,添加了氨基乙酸形成的阳极氧化膜的自腐蚀电位正移,自腐蚀电流变小;当氨基乙酸加入量为7.5 g/L时氧化膜的耐蚀性最优,自腐蚀电流密度为1.18×10~(-7) A/cm~2.  相似文献   

11.
泡沫石墨是一种新型阳极材料, 对其进行改性是提高海底微生物燃料电池性能的重要途径之一。本文研究了混酸改性泡沫石墨阳极及其电化学性能。研究表明:改性后泡沫石墨表面生成羟基、羧基等含氧官能团; 改性阳极接触角降低了24.5°, 润湿性提高, 有利于微生物附着; 交换电流密度达到6760.8 mA/m2, 动力学活性提高了53.7倍。研究还发现改性后阳极电位降低了100 mV, 电池开路电位达到865 mV (未改性750 mV), 最大输出功率密度为358.1 mW/m2, 提高了2.4倍。三个月放电测试显示, 改性阳极和电池具有相对稳定的性能。同时, 本文初步分析了改性后阳极动力学活性增加和电位降低的原因。该研究结果为构建高输出电压和功率的海底微生物燃料电池提供了依据。  相似文献   

12.
陈超  张玉平  陈为为  程焕武  王鲁 《材料导报》2017,31(10):121-126
采用微弧氧化技术在5052铝合金表面制备蓝色陶瓷膜,研究Co(OH)_2着色剂浓度和微弧氧化电压对蓝色陶瓷膜组织结构和腐蚀性能的影响规律。采用光学显微镜、扫描电镜和X射线衍射研究蓝色陶瓷膜层的宏观形貌、微观组织和相结构,采用电化学工作站测试陶瓷层在3.5%(质量分数)NaCl溶液中的电化学腐蚀性能。研究结果表明,蓝色微弧氧化陶瓷层主要由γ-Al_2O_3组成,提高Co(OH)_2浓度或者氧化电压,膜层颜色由浅向深演变,当浓度增至3.0g/L后膜层蓝色不再加深,同时膜层表面逐渐封闭,致密性提高。在140V氧化电压下,添加1.0g/L Co(OH)_2所制备的蓝色膜层具有最好的耐腐蚀性能。蓝色膜具有颜色艳丽、装饰性好等优势,相信该蓝色微弧氧化膜技术在建筑材料和仪器仪表行业将会有广阔的应用前景。  相似文献   

13.
为获得低毒或无毒、对环境友好且缓蚀效果优良的高效缓蚀剂,以曼尼希碱、共轭烯醇化合物等为原料,研制出了一种不合丙炔醇的环保型酸化缓蚀剂MCA-Ⅰ,采用静态失重法、电化学法对其缓蚀性能进行了评价,并优选了缓蚀剂配方.结果表明:当曼尼希碱、共轭烯醇和增效剂在缓蚀剂中的质量分数分别为12.0%,2.5%,1.5%时,缓蚀剂缓蚀性能最佳;MCA-Ⅰ浓度为1.0%时,N80钢片在90℃,20.0%盐酸中的腐蚀速率降低到1.076 5g/(m2-h),缓蚀率为99.8%;酸化缓蚀剂MCA-Ⅰ可使腐蚀原电池的电流密度显著降低,极化电阻明显增大,属于以抑制阳极为主的混合型缓蚀剂.  相似文献   

14.
A CdS doped carbon nanotube sol was synthesised by the sol-gel technique and applied to a titanium plate to synthesise a composite electrode. Energy dispersion X-ray spectroscopy and X-ray diffraction analysis confirmed that the electrodes contain CdS. Scanning electron microscopy revealed that the carbon nanotubes were uniformly dispersed on the surface of the plate. A two-chamber microbial fuel cell was constructed using the electrode as the anode, flexible graphite as the cathode and glucose solution as the substrate in the anode chamber. The effects of CdS dose, glucose concentration and temperature on the cell efficiency and organic degradation have been analysed. At 313 K, the two-chambered fuel cell possessed the optimum output voltage of 906 mV, with a power of 19·6 mW m?2 and a removal rate of 81% for chemical oxygen demand in treatment of wastewater. The composite electrode was found to be stable and to perform reproducibly.  相似文献   

15.
Zhang  Ying  Liu  Boyang  Hitz  Emily  Luo  Wei  Yao  Yonggang  Li  Yiju  Dai  Jiaqi  Chen  Chaoji  Wang  Yanbin  Yang  Chunpeng  Li  Hongbian  Hu  Liangbing 《Nano Research》2017,10(4):1356-1365
Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells.However,growth of Li dendrites,unstable solid electrolyte interphases,low Coulombic efficiencies,and safety hazards have significantly hindered the practical application of metallic Li anodes.Herein,we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host.The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth.An additional conformal A12O3 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer.The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm-2.Moreover,the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm-2 in an organic carbonate electrolyte,thus demonstrating electrochemical stability superior to that of planar current collectors.Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号