共查询到15条相似文献,搜索用时 93 毫秒
1.
针对化工生产过程工况复杂多变,单一的软测量模型难以满足系统对估计精度的要求,提出了一种基于改进的扩张搜索聚类算法的多流形软测量建模的方法。该算法采用流形距离来代替欧氏距离,自适应地确定邻域半径,并引入局部密度用于确定聚类中心,对聚类后得到的各个子流形分别采用流形学习中的核等距映射法进行特征提取,建立基于高斯过程回归的子模型。将该方法应用于某双酚A生产装置的软测量建模,仿真结果验证了该方法的有效性。 相似文献
2.
基于改进Bagging算法的高斯过程集成软测量建模 总被引:1,自引:0,他引:1
为提高对工况复杂的工业过程进行软测量建模的模型精度和泛化能力,提出了一种基于改进Bagging算法的高斯过程集成软测量建模方法。该算法采用高斯过程回归算法建立集成学习模型的基学习器,并在Bagging算法对训练样本重采样生成基学习器训练子集的基础上,采用基于正则化互信息的特征排序指标进行基学习器的输入特征抽取,实现有监督的特征扰动,从而改善学习器的差异度。待测样本进行软测量估计时,根据各高斯过程基学习器输出的方差自适应地选择基学习器进行集成输出。采用工业双酚A生产装置反应器的现场数据建模仿真,结果表明该方法是有效的。 相似文献
3.
针对生物发酵过程,提出了一种基于证据理论的高斯过程回归多模型软测量方法,其中多模型融合策略同时考虑了数据聚类特性和软测量子模型统计特性。首先,对聚类后的各子类建立高斯过程回归子模型;然后,基于聚类隶属度函数和高斯过程回归子模型后验概率分别设计子模型权值,并利用证据合成规则将两类权值进行证据合成得到融合权值;最后,将该融合权值作为加权因子对子模型进行融合。通过青霉素发酵过程仿真数据和红霉素发酵过程工业数据研究表明, 相比单一模型和传统多模型高斯过程回归软测量方法,本文所提方法具有较高的预测精度和较小的预测不确定度。 相似文献
4.
5.
针对化工过程软测量模型的多样性,提出基于一种加权模糊聚类方法的多模型建模方法。将输入向量与输出的相关性作为加权系数,构建加权模糊聚类算法,对样本空间的输入数据进行聚类,然后用与输入变量对应的子模型进行输出估计,子模型输出作为系统模型的最终输出。该方法能够实现对输入数据更加合理的划分,提高软测量模型的精度。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该方法的可行性和有效性。 相似文献
6.
7.
在多模型软测量建模中,对于新的数据以及异常样本点,传统的聚类方法没有充分考虑它们的特性,因而所属类别往往不能反映其真实属性,最终导致模型精度不高.为此,提出一种基于最小环路能量聚类的算法,该方法将样本聚类转化为寻找一个最小能量环问题,通过模拟退火算法搜索一条经过所有样本点的最小能量环实现样本集的聚类;对侦破出的异常样本点和新的测试数据根据其能量值确定其所属属性,从而提高聚类和分类精度;然后利用支持向量机为各个子类建立回归子模型,得到软测量组合模型.将该方法应用于双酚A生产过程质量指标的软测量建模中,仿真结果验证了该方法的有效性. 相似文献
8.
青霉素发酵过程具有较强的非线性、时变性、阶段性和不确定性,基于单一的软测量模型对产物浓度进行在线估计,难以满足系统对模型精度的要求。针对上述问题,提出一种改进密度峰值聚类的多模型软测量建模方法来估计青霉素发酵过程中的产物浓度。首先,引入相似度函数代替欧氏距离计算样本点的k近邻,并且计算样本点与其k近邻之间的共享近邻,进而利用样本点的k近邻及共享近邻重新定义样本点的局部密度。其次,利用样本点之间的k近邻关系来重新定义样本点的分配策略;通过改进的聚类算法得到各聚类子集,分别建立基于最小二乘支持向量机的软测量模型。Pensim仿真平台的验证结果表明,改进的聚类算法能够更加准确地对样本数据进行聚类,从而有效提高青霉素发酵过程软测量模型的估计精度。 相似文献
9.
基于快速高斯核函数模糊聚类算法的图像分割 总被引:1,自引:0,他引:1
对模糊聚类算法通过引入高斯核函数,平滑图像像素灰度值,从而增强图像分割的抗干扰能力和鲁棒性,并结合阈值模糊聚类算法,提高了图像分割的速度。首先利用阈值模糊聚类法划分初始输入空间,得到模糊规则数及初始聚类中心;然后用高斯核函数平滑图像的像素灰度值;最后用标准模糊聚类算法求解并优化模糊隶属度和聚类中心。将本算法应用于添加噪声的嫦娥一号采集的月球地面灰度图像和Lena灰度图像进行图像分割,仿真结果验证了本方法的鲁棒性、有效性和实用性。 相似文献
10.
基于在线聚类和关联向量机的多模型软测量建模 总被引:1,自引:0,他引:1
针时软测量样本具有按工况点聚类的特性,提出一种基于在线聚类和关联向量机的多模型软测量建模方法.聚类算法通过设定各辅助变量的权重、按引力原理聚类以及合并子聚类,可把样本按照不同的工作点进行聚类.子模型通过关联向量机实现概率化预测,并采用一种更加有效的核参数选择算法提高算法速度.该建模方法在加氢裂化分馏塔装置的轻石脑油终馏点在线预测系.统中取得了良好的效果. 相似文献
11.
The dynamic soft sensor based on a single Gaussian process regression (GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression (GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. 相似文献
12.
为实现催化重整过程生产指标的综合优化,基于已实现工业应用的催化重整17集总反应动力学模型和催化重整过程机理模型,考虑相应的多种约束条件,建立了以最大化总芳烃收率和最小化重芳烃收率为目标的多目标操作优化模型。提出了一种将遗传算法与局部优化方法相结合的多目标混合遗传算法HNAGA,并用于多目标操作优化模型的求解。现场工业数据的仿真研究表明,HNAGA在寻找Pareto最优解前沿方面比原遗传算法具有一定的优越性。将该多目标优化模型和求解方法应用于工业催化重整装置的操作优化,可以有效提高决策的准确性。 相似文献
13.
14.
Linear models can be inappropriate when dealing with nonlinear and multimode processes, leading to a soft sensor with poor performance. Due to time-varying process behaviour it is necessary to derive and implement some kind of adaptation mechanism in order to keep the soft sensor performance at a desired level. Therefore, an adaptation mechanism for a soft sensor based on a mixture of Gaussian process regression models is proposed in this paper. A procedure for input variable selection based on mutual information is also presented. This procedure selects the most important input variables for output variable prediction, thus simplifying model development and adaptation. Apart from online prediction of the difficult-to-measure variable, this soft sensor can be used for adaptive process monitoring. The efficiency of the proposed method is benchmarked with the commonly applied recursive PLS and recursive PCA method on the Tennessee Eastman process and two real industrial examples. 相似文献