首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
吉文鹏  杨慧中 《化工学报》2019,70(2):723-729
针对化工生产过程工况复杂多变,单一的软测量模型难以满足系统对估计精度的要求,提出了一种基于改进的扩张搜索聚类算法的多流形软测量建模的方法。该算法采用流形距离来代替欧氏距离,自适应地确定邻域半径,并引入局部密度用于确定聚类中心,对聚类后得到的各个子流形分别采用流形学习中的核等距映射法进行特征提取,建立基于高斯过程回归的子模型。将该方法应用于某双酚A生产装置的软测量建模,仿真结果验证了该方法的有效性。  相似文献   

2.
基于改进Bagging算法的高斯过程集成软测量建模   总被引:1,自引:0,他引:1  
孙茂伟  杨慧中 《化工学报》2016,67(4):1386-1391
为提高对工况复杂的工业过程进行软测量建模的模型精度和泛化能力,提出了一种基于改进Bagging算法的高斯过程集成软测量建模方法。该算法采用高斯过程回归算法建立集成学习模型的基学习器,并在Bagging算法对训练样本重采样生成基学习器训练子集的基础上,采用基于正则化互信息的特征排序指标进行基学习器的输入特征抽取,实现有监督的特征扰动,从而改善学习器的差异度。待测样本进行软测量估计时,根据各高斯过程基学习器输出的方差自适应地选择基学习器进行集成输出。采用工业双酚A生产装置反应器的现场数据建模仿真,结果表明该方法是有效的。  相似文献   

3.
基于证据合成的高斯过程回归多模型软测量方法   总被引:1,自引:1,他引:0  
梅从立  杨铭  刘国海 《化工学报》2015,66(11):4555-4564
针对生物发酵过程,提出了一种基于证据理论的高斯过程回归多模型软测量方法,其中多模型融合策略同时考虑了数据聚类特性和软测量子模型统计特性。首先,对聚类后的各子类建立高斯过程回归子模型;然后,基于聚类隶属度函数和高斯过程回归子模型后验概率分别设计子模型权值,并利用证据合成规则将两类权值进行证据合成得到融合权值;最后,将该融合权值作为加权因子对子模型进行融合。通过青霉素发酵过程仿真数据和红霉素发酵过程工业数据研究表明, 相比单一模型和传统多模型高斯过程回归软测量方法,本文所提方法具有较高的预测精度和较小的预测不确定度。  相似文献   

4.
基于在线聚类的多模型软测量建模方法   总被引:14,自引:6,他引:8  
李修亮  苏宏业  褚健 《化工学报》2007,58(11):2834-2839
针对石化行业中软测量建模样本的特性,提出一种基于在线聚类和v-支持向量回归机(vSVR)的多模型软测量建模方法。在vSVR建模过程中,通过在线聚类算法改善vSVR模型参数选择算法的稳定性,并用vSVR参数的先验知识和KKT条件实现模型参数的快速寻优,提高了模型的学习效率和精度。该建模方法在加氢裂化分馏塔装置的轻石脑油终馏点在线预测系统中取得了良好的效果。  相似文献   

5.
针对化工过程软测量模型的多样性,提出基于一种加权模糊聚类方法的多模型建模方法。将输入向量与输出的相关性作为加权系数,构建加权模糊聚类算法,对样本空间的输入数据进行聚类,然后用与输入变量对应的子模型进行输出估计,子模型输出作为系统模型的最终输出。该方法能够实现对输入数据更加合理的划分,提高软测量模型的精度。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该方法的可行性和有效性。  相似文献   

6.
赵荣荣  赵忠盖  刘飞 《化工学报》2019,70(12):4741-4748
发酵过程中基质浓度往往无法在线测量,采用高斯过程回归(GPR)建立基质浓度的估计模型,实现了其软测量。不同于传统软测量方法对基质浓度的估计,该方法不仅可以得到估计值,还能够得到其估计方差。考虑到发酵过程中各变量之间的非线性、相关性,为了提高模型的预测性能,在模型建立之前首先用k-近邻互信息(k-MI)辅助变量选择方法对模型的输入变量进行选择。从青霉素发酵过程的应用结果来看,采用kMI-GPR方法取得了较好的估计效果。  相似文献   

7.
在多模型软测量建模中,对于新的数据以及异常样本点,传统的聚类方法没有充分考虑它们的特性,因而所属类别往往不能反映其真实属性,最终导致模型精度不高.为此,提出一种基于最小环路能量聚类的算法,该方法将样本聚类转化为寻找一个最小能量环问题,通过模拟退火算法搜索一条经过所有样本点的最小能量环实现样本集的聚类;对侦破出的异常样本点和新的测试数据根据其能量值确定其所属属性,从而提高聚类和分类精度;然后利用支持向量机为各个子类建立回归子模型,得到软测量组合模型.将该方法应用于双酚A生产过程质量指标的软测量建模中,仿真结果验证了该方法的有效性.  相似文献   

8.
刘聪  谢莉  杨慧中 《化工学报》2021,72(3):1606-1615
青霉素发酵过程具有较强的非线性、时变性、阶段性和不确定性,基于单一的软测量模型对产物浓度进行在线估计,难以满足系统对模型精度的要求。针对上述问题,提出一种改进密度峰值聚类的多模型软测量建模方法来估计青霉素发酵过程中的产物浓度。首先,引入相似度函数代替欧氏距离计算样本点的k近邻,并且计算样本点与其k近邻之间的共享近邻,进而利用样本点的k近邻及共享近邻重新定义样本点的局部密度。其次,利用样本点之间的k近邻关系来重新定义样本点的分配策略;通过改进的聚类算法得到各聚类子集,分别建立基于最小二乘支持向量机的软测量模型。Pensim仿真平台的验证结果表明,改进的聚类算法能够更加准确地对样本数据进行聚类,从而有效提高青霉素发酵过程软测量模型的估计精度。  相似文献   

9.
基于快速高斯核函数模糊聚类算法的图像分割   总被引:1,自引:0,他引:1  
对模糊聚类算法通过引入高斯核函数,平滑图像像素灰度值,从而增强图像分割的抗干扰能力和鲁棒性,并结合阈值模糊聚类算法,提高了图像分割的速度。首先利用阈值模糊聚类法划分初始输入空间,得到模糊规则数及初始聚类中心;然后用高斯核函数平滑图像的像素灰度值;最后用标准模糊聚类算法求解并优化模糊隶属度和聚类中心。将本算法应用于添加噪声的嫦娥一号采集的月球地面灰度图像和Lena灰度图像进行图像分割,仿真结果验证了本方法的鲁棒性、有效性和实用性。  相似文献   

10.
基于在线聚类和关联向量机的多模型软测量建模   总被引:1,自引:0,他引:1  
针时软测量样本具有按工况点聚类的特性,提出一种基于在线聚类和关联向量机的多模型软测量建模方法.聚类算法通过设定各辅助变量的权重、按引力原理聚类以及合并子聚类,可把样本按照不同的工作点进行聚类.子模型通过关联向量机实现概率化预测,并采用一种更加有效的核参数选择算法提高算法速度.该建模方法在加氢裂化分馏塔装置的轻石脑油终馏点在线预测系.统中取得了良好的效果.  相似文献   

11.
提出一种结合线性回归和RBF神经网络的混合软测量建模方法,既能很好地利用神经网络的非线性特性,又能在一定程度上消除神经网络泛化能力不强的影响。通过对比实验及在某炼油厂连续重整装置中的应用,表明这种混合RBF神经网络比之常规RBF神经网络,其性能指标更好,并且没有带来计算量的大幅度增加,具有更高的实际应用价值。  相似文献   

12.
T406 型脱氯剂在重整余氢加氢装置上的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
那旭东 《工业催化》1999,7(1):61-63
本文报导了大庆石油化工总厂炼油厂重整装置余氢用于加氢装置存在的问题及采用冷凝脱油后脱氯方法的应用情况。  相似文献   

13.
氢气是目前最理想的高热值清洁能源之一,以生物油为原料重整制备氢气是一种很有前途的制氢途径。本文主要介绍了生物油水蒸气催化重整制氢反应机理,指出重整生物油制氢过程中积碳是造成催化剂失活的主要原因,也是制约生物油重整制氢工业化的最大障碍,研究生物油水蒸气催化重整过程金属催化剂的积碳失活机理及开发抗积碳、高活性、长寿命的催化剂成为当前及今后研究的重要方向。  相似文献   

14.
基于混合遗传算法的催化重整过程多目标优化   总被引:1,自引:1,他引:0       下载免费PDF全文
为实现催化重整过程生产指标的综合优化,基于已实现工业应用的催化重整17集总反应动力学模型和催化重整过程机理模型,考虑相应的多种约束条件,建立了以最大化总芳烃收率和最小化重芳烃收率为目标的多目标操作优化模型。提出了一种将遗传算法与局部优化方法相结合的多目标混合遗传算法HNAGA,并用于多目标操作优化模型的求解。现场工业数据的仿真研究表明,HNAGA在寻找Pareto最优解前沿方面比原遗传算法具有一定的优越性。将该多目标优化模型和求解方法应用于工业催化重整装置的操作优化,可以有效提高决策的准确性。  相似文献   

15.
随着生物柴油的大规模化发展,副产物甘油的合理利用成为生物柴油产业发展的关键问题之一。对甘油蒸汽重整、水相重整和超临界重整制氢气和合成气的研究进行了综述和评价,对未来甘油重整制氢气/合成气的研究提出了不足和展望。  相似文献   

16.
PLS回归软测量方法在催化重整稳定油组分估计中的应用   总被引:8,自引:2,他引:8  
提出扰动分类法和线性部分最小二乘(PLS)回归相结合的建立软测量模型的方法,并将它用于催化重整稳定油组分的估计中。仿真结果表明扰动分类法和PLS回归相结合建立的软测量模型简单、实用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号